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Abstract Purpose Objective assessment of intraoperative technical skill is
necessary for technology to improve patient care through surgical training. Our
objective in this study was to develop and validate deep learning techniques
for technical skill assessment using videos of the surgical field.

Methods We used a data set of 99 videos of capsulorhexis, a critical step in
cataract surgery. One expert surgeon annotated each video for technical skill
using a standard structured rating scale, the International Council of Ophthal-
mology’s Ophthalmology Surgical Competency Assessment Rubric:phacoemulsification
(ICO:OSCAR-phaco). Using two capsulorhexis indices in this scale (commence-
ment of flap & follow through; formation and completion), we specified an ex-
pert performance when at least one of the indices was 5 and the other index was
at least 4, and novice, otherwise. In addition, we used scores for capsulorhexis
commencement and capsulorhexis formation as separate ground truths (Likert
scale of 2 to 5; analyzed as 2/3, 4, and 5). We crowdsourced annotations of
instrument tips. We separately modeled instrument trajectories and optical
flow using temporal convolutional neural networks to predict a skill class (ex-
pert/novice) and score on each item for capsulorhexis in ICO:OSCAR-phaco.
We evaluated the algorithms in a 5-fold cross-validation and computed accu-
racy and area under the receiver operating characteristics curve (AUC).

Results The accuracy and AUC were 0.848 and 0.863 for instrument tip
velocities, and 0.634 and 0.803 for optical flow fields, respectively.

Conclusions Deep neural networks effectively model surgical technical skill
in capsulorhexis given structured representation of intraoperative data such
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as optical flow fields extracted from video or crowdsourced tool localization
information.

Keywords Surgical skill assessment · Neural networks · Deep learning ·
Capsulorhexis · Cataract surgery · Tool trajectories · Crowdsourcing

1 Introduction

Cataract surgery is a definitive intervention to improve visual impairment
caused by an aging lens. Although cataract surgery is one of the most com-
monly performed procedures across the world, acquiring skill and competency
with the procedure is not trivial. In fact, the learning curve for cataract surgery
is quite steep; surgical skill continues to improve significantly well beyond the
first 80 resident cases [14]. For instance, data from the United States show
that about 14% of all graduating ophthalmology residents reported insuffi-
cient skill in cataract surgery, and favored additional training [11]. Despite
being a critical skill that ophthalmologists across the globe should efficiently
acquire, training in cataract surgery is supported only by manual assessments
using heterogeneous structured rating scales [13]. Data science and machine
learning techniques applied to readily accessible videos of the surgical field
hold substantial potential for automated objective assessment of technical skill
in cataract surgery. However, previous research in data science for cataract
surgery emphasized automated detection of surgical phase [18,19]. Our ob-
jective in this study is to develop and validate deep learning algorithms for
objective assessment of technical skill in capsulorhexis. Together with pha-
coemulsification, capsulorhexis is one of the critical steps in cataract surgery,
difficult to learn and teach [11], and may affect surgical outcomes.

Data-driven methods for objective assessment of surgical technical skill
have been explored in multiple surgical disciplines, with some success, and
mostly in the context of simulation [17]. Recent technical advances, particu-
larly in deep learning, are transforming algorithms to automate understanding
human activities in surgical videos [1,3,4]. Despite these advances, the pace of
progress is limited by the scale of data that may be captured in the operating
room (OR). In their current form, data sets for assessment of technical skill in
the OR are insufficient to train modern deep networks in a purely data-driven
fashion. To properly harness the potential of such powerful yet data-dependent
learning models for fine-grained tasks under data scarce settings, we believe
it is essential to identify appropriate structure in the problem for the model
to exploit. For example, in cataract surgery, instrument usage information
is a strong indicator of surgical context [1,2]. Applying the structured prior
knowledge to identifying surgical phase by recognizing tool usage, deep neural
network based approach shows excellent phase recognition performance [18].
For the task of identifying technical surgical skill from video, we hypothesize
that learning a model on motion based data representation is more effective
over raw RGB inputs. Working with motion based representation such as op-
tical flow or trajectories provides robustness to discrepencies that may exist
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across institutes and to intra sample visual variances. In this work, we study
the effects of varying amounts of structure in data on neural network’s ability
to recognize surgical technical skill in capsulorhexis.

In summary, major contributions in this work are a) techniques to automate
objective assessment of technical skill assessment in capsulorhexis at scale, and
b) comparative evaluation of algorithm performance with different amounts of
structure in time series intraoperative video images.

2 Methods

We describe our technical approach using temporal convolutional neural net-
works (TCNs) [9] to objectively assess intraoperative technical skill using
videos of capsulorhexis. Videos of the surgical site serve as rich sources of
information containing surgical context, motions and intraoperative actions.
We model surgical videos as a time-series of local spatio-temporal representa-
tions. By end-to-end learning of technical skill with TCNs, we wish to jointly
learn discriminative local patterns in video as well as temporal dependencies
of such patterns. We describe our TCN approach in Section 2.1. Instead of
directly observing RGB pixel values of videos, we hypothesize that motion
captures more scene structure relevant to surgical skill. In Section 2.2, we ex-
plore representing local video-snippets as optical flow fields computed from
state-of-the-art optical flow estimation methods such as [15]. In capsulorhexis
and surgery in general, surgeons interact with the surgical site through instru-
ments. Then for the task of assessing the surgeon’s technical skill, we believe
that surgical tool movement during surgery encodes the most relevant informa-
tion for identifying technical skill. Therefore, we explore learning skill models
with tool trajectories. We describe our skill assessment approach with tool
trajectories in Sections 2.3 and 2.4.

2.1 TCNs for Skill Assessment

We model a video X as a temporal concatenation of N local representations
such that

X = { # »x1, · · · , #  »xN}, # »xn ∈ Rm, X ∈ RN×m (1)

where # »xn is the n-th local spatio-temporal encoding of m dimensions. For a
TCN, which maps X, to a skill label, y, with L layers, each layer l has Fl
convolutional filters of size d × Fl−1 where d is the temporal filter length.
During a forward pass, given a signal from the previous layer, h(l−1), the l-th
layer of TCN computes the activation h(l) as

h(l) = σ(Wl ∗ h(l−1)) (2)

where Wl is the set of filters at the l-th layer, σ(·) is a non-linearity (Rectified
Linear Unit) and ∗ is a convolution operator. A global average pooling layer
in the temporal domain as in [7] ensures that regardless of the length of the
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trajectory, the TCN always outputs a fixed size representation, h(L) ∈ RFL .
Finally, TCN includes a linear layer, WC ∈ RC×FL and the corresponding bias
term bC , followed by a softmax activation to compute the skill class probabil-
ities, where C is the number of skill labels.

ŷ = softmax(WCh
(L) + bC) (3)

The presented TCN approach shares many similarities with the approach pro-
posed in [7,9].

2.2 Local Representation using Optical Flow Fields

To model local spatial-temporal movements from RGB videos, we utilize op-
tical flow fields. For the TCN model that learns skill from optical flow fields,
a set of frames in the n-th local window, {Xt · · ·Xt+δ}n, is encoded into a
feature representation as:

∆In = G(Xt, Xt+δ), ∆In ∈ RW×H×2

# »xn = f(∆In), # »xn ∈ R2WH
(4)

where ∆In is the estimated optical flow fields of size W by H by 2, G is an
optical flow computation model, f is a flattening operator that rasterizes the
flow fields in to a 1-dimensional vector and (Xt, Xt+δ) is the input image pair.
In our experiments, we apply the model described in [15] to compute optical
flow fields; however, the choice of G remains flexible.

2.3 Local Representation with Structured Data: Tool Trajectories

Under the hypothesis that more structured data such as intraoperative tool
movements provide the right structured information for learning skill, we col-
lect tool trajectories from the crowd using Amazon Mechanical Turk frame-
work [10]. The data collection procedure follows the recent work of [6] which
validates the effectiveness of collecting tool tip trajectories in cataract surgery
at scale. Briefly, crowd workers are asked to annotate the tips of the tools. If
the tool tips are not in the field of view but the instrument is in the eye, the
crowd workers are asked to annotate the points on the tools that are closest
to the tips.

Similar to the local optical flow based representation discussed in 2.2, a
set of frames in the n-th local window, {Xt · · ·Xt+δ}n, is encoded using crowd
annotations:

# »xn =< p1t (x), p1t (y), p2t (x), p2t (y), · · · , pdt (x), pdt (x) >, # »xn ∈ R2d (5)

where d is the number of defined tool tip locations and (pdt (x), pdt (y)) is the
pixel location of the d-th tool tip at time t. In this work, tool trajectory
includes three tool keypoints: the tip of the cystotome and the two tips of the
Utrata forceps resulting in a 6 dimensional representation per timestep.
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Fig. 1: Trajectory of tools in capsulorhexis. The distortion in forcep trajectory
shown in the bottom row illustrates that there exists significant trajectory
appearance variance among trials arising from characteristics of intraopera-
tive surgical data such as surgical site movement. The top row shows a sam-
ple where the surgical site is relatively stationary, leading to a clean circular
trajectory. Additionally, the two samples vary in scale due to different data
capture settings. Red encodes the beginning portion of the procedure; yellow
corresponds to the ending stages of capsulorhexis. Best viewed in color.

2.4 Tool Trajectory Representation for Effective Skill Assessment

With intraoperative surgical data such as tool trajectories, it is often the
case that there exists significant variance among trials. For example in capsu-
lorhexis, the circular tearing motion using the forceps may not look circular
at all when the surgical site itself translates. Figure 1 illustrates such vari-
ability common in intraoperative surgical data. In both samples, the forceps
are creating a circular tear but the resulting trajectory shape is dramatically
different between the cases. Moreover, in Figure 1, the scale difference among
samples is also evident. When the goal of the model is to identify tool motions
that indicate technical surgical skill, such characteristics of the data pose a
significant hurdle for the learning task. Compounded by the additional diffi-
culty that intraoperative surgical data with skill information is often limited
in scale, finding an effective representation of the data for surgical skill assess-
ment model learning is crucial.

We observe that tool trajectory representation with pixel locations is vul-
nerable to many compounding factors commonly found in surgical data such
as intraoperative surgical site movement, variations in data collection settings
and inter-site tool differences. Hence, instead of using tool tip positions, we
experiment with representing trajectories as a time-series of tool tip velocities.
More specifically, compared to the representation presented in Section 2.3, the
local n-th window, # »xn, is now defined as:

# »pn =< p1t (x), p1t (y), · · · , pdt (x), pdt (x) > , # »pn ∈ R2d

#       »pn+1 =< p1t+δ(x), p1t+δ(y), · · · , pdt+δ(x), pdt+δ(x) >

# »xn = #       »pn+1 − # »pn , # »xn ∈ R2d

(6)



6 Tae Soo Kim et al.

Fig. 2: Duration of capsulorhexis in our sample. Mean (SD) is 147.97 (104.81)
seconds. The green bar represents a sample from a novice class and blue oth-
erwise. Best viewed in color.

Compared to raw tool trajectories presented in Section 2.3, # »xn now encodes the
first derivative information which is more robust to common data complication
scenarios mentioned above. We argue that such simple encoding of trajectories
is more effective for the task of surgical skill assessment and can improve
results.

3 Experiments

3.1 Data representations

We evaluated several data representations including tool tip positions (TP),
tool tip velocities (TV), optical flow fields (FF), as well as augmented represen-
tations including FF + TP, FF + TV, and FF + TP + TV. We hypothesized
that concatenating different data representations may have complementary
information and thereby, improve algorithm performance.

3.2 Data set

Our data set comprised of 99 videos of capsulorhexis captured from the op-
erating microscope. We processed the videos to a 640 by 480 resolution at
59 frames per second. One expert surgeon watched each video, with no in-
formation on identity of the operating surgeon, and evaluated for technical
skill using a previously validated structured rating scale - the International
Council of Ophthalmology’s Ophthalmology Surgical Competency Assessment
Rubric:Phacoemulsification (ICO-OSCAR:phaco) [13]. This rubric includes
two items, one for each major activity in capsulorhexis —commencement of
flap & follow-through (CF) score and formation and completion (RF). Both
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Table 1: Data set statistics for cross validation folds. We chose a partition of
the data set that minimized differences in within-fold sum of durations across
folds with balanced distribution of expert and non-expert instances across
folds. CF: commencement of flap & follow-through. RF: rhexis formation

Fold 1 Fold 2 Fold3 Fold 4 Fold 5

Expert 10 10 10 10 11

Non-Expert 9 9 9 9 12

CF=2 or 3 4 1 3 4 2

CF=4 8 9 6 6 10

CF=5 7 9 10 9 11

RF=2 or 3 6 4 5 5 3

RF=4 3 6 6 6 12

RF=5 10 9 8 8 8

Total Duration (s) 2950.9 2909.39 2934.17 2926.43 2927.74

items are assessed on a Likert scale of 2 to 5, with a larger score indicating
better skill.

For our analyses, we specified the ground truth as a binary (expert/non-
expert) skill class label, in addition to scores on each of the two items in
ICO-OSCAR:phaco for capsulorhexis. We specified a given video as an expert
instance when it received a score of 5 on at least one item for capsulorhexis and
at least 4 on the other item. We did not use faculty/trainee appointment status
as a surrogate for expert/non-expert skill class labels because it is helpful
neither for the educators (to give effective feedback) nor for the trainees (for
deliberate practice). Table 1 illustrates number of instances of capsulorhexis
by the ground truth binary skill class label. Figure 2 illustrates the distribution
of duration of capsulorhexis in our sample.

3.3 Experimental Setup

We conducted two sets of experiments. In the first, we predicted a binary tech-
nical skill class label (expert/novice), and in the second, we jointly predicted
the binary skill class and scores on individual items for capsulorhexis in ICO-
OSCAR:phaco (CF and RF). That is, given a sample, each prediction incurred
a loss and we jointly optimized the model to maximize accuracy for all three
predictions. In addition, we treated the second experiment as a classification
task with three classes —a score of 2 or 3, a score of 4, and a score of 5. We
chose this approach owing to very few samples in our data set with a ground
truth score of 2 for CF and RF.

We performed 5-fold cross validation using the same data partitions for
all experiments in this study. Retaining one fold as the test, we iteratively
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Fig. 3: Receiver operating characteristic curves for algorithms for technical
skill assessment in capsulorhexis.

used three of the remaining four folds for training the TCN and one fold for
validation.

During training, after every training epoch, we computed accuracy on the
validation set and stored the state of the model if it improved. We did not use
data from the test set for model development. Within each cross validation
partition, we used the average of the class probabilities across the four vali-
dated models. In addition, our experimental set up heavily penalizes overfitted
models that fail to generalize to unseen samples.

Model Settings: We used identical learning parameters and TCN set-
tings for all reported experiments. Figure 4 depicts our TCN architecture. All
convolution layers used 1D temporal convolution filters of length 8 and max
pooling layers downsample the input by a factor of 2 in the temporal dimen-
sion. We optimized the model for 50 epochs using ADAM [8], with a learning
rate of 0.001 throughout and with a L2 weight decay term of magnitude 1e-5.
Standard neural network techniques often found effective in the computer vi-
sion literature such as dropout [16] and batch normalization [5] did not exhibit
meaningful differences empirically. We implemented our model using PyTorch
(0.4.1) [12] with Python 3.6 (implementation code may be publicly available
in the future). For experiments using optical flow, the extracted flow fields are
of dimensions W = 10 by H = 7 by 2 resulting in a flattened representation
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Fig. 4: Skill Assessment TCN architecture. TCN architecture has 3 temporal
convolution layers, 3 max pool layers, global average pooling layer followed by
a fully conntected linear layer and a softmax activation. Numbers of temporal
filters are denoted in the box. All convolutional filters are of length 8 and max
pool reduces the temporal dimension by a factor of 2.

Table 2: Skill classification accuracy per fold and across folds (numbers in
parentheses are 95% confidence intervals). FF = Flow fields; TP = Tool tip
positions; TV = Tool tip velocities.

Representation Fold 1 Fold 2 Fold3 Fold 4 Fold 5 Accuracy Across Folds

TV 0.789 0.737 0.842 1.000 0.870 0.848 (0.770 to 0.926)

TP 0.526 0.632 0.632 0.789 0.565 0.629 (0.579 to 0.679)

FF 0.684 0.684 0.474 0.632 0.696 0.634 (0.561 to 0.707)

FF + TP 0.789 0.684 0.632 0.632 0.696 0.686 (0.636 to 0.736)

FF + TV 0.737 0.789 0.632 0.632 0.696 0.696 (0.644 to 0.751)

FF + TP + TV 0.842 0.632 0.684 0.684 0.696 0.708 (0.646 to 0.770)

of 140 dimensions. Further details on collection of tool tip data are described
in [6]. We computed estimates and 95% confidence intervals (CIs) for global
metrics including accuracy and area under the receiver operating characteristic
curve (AUC), in addition to class-specific sensitivity and specificity.

3.4 Results

Table 2 illustrates skill classification (expert/novice) accuracy of the algorithm
for data representations described in Section 2, within and across cross valida-
tion folds. The overall accuracy was highest with TV. While combining data
representations improved accuracy of the algorithm, their estimates were lower
than that with TV. This difference is likely because representations that are
sensitive to spatial position such as TP and FF poorly generalize, especially
with limited training data. On the other hand, TV is robust to variation in
spatial position of the tool tip across videos, and thereby, allowing the model
to effectively generalize.

Our estimates in Tables 2 and 3 show that algorithms trained with different
data representations vary in their performance characteristics. TV yielded an
algorithm that had the best sensitivity but lower, albeit still one of the highest,
specificity, along with high AUC. The TCN algorithm with TP alone had
the lowest performance. Combining FF with TP adversely affected sensitivity
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Table 3: Estimates of performance for assessing a global technical skill class
(expert/novice) in capsulorhexis (95% confidence intervals in parentheses). FF
= Flow fields; TP = Tool tip positions; TV = Tool tip velocities; AUC = Area
under the receiver operating characteristic curve.

Encoding Sensitivity Specificity AUC

TV 0.824 (0.697 to 0.904) 0.708 (0.568 to 0.818) 0.863 (0.792 to 0.863)

TP 0.647 (0.510 to 0.764) 0.521 (0.383 to 0.655) 0.672 (0.565 to 0.672)

FF 0.725 (0.591 to 0.829) 0.708 (0.568 to 0.818) 0.803 (0.716 to 0.803)

FF + TP 0.667 (0.530 to 0.780) 0.750 (0.612 to 0.851) 0.766 (0.669 to 0.766)

FF + TV 0.745 (0.611 to 0.845) 0.708 (0.568 to 0.818) 0.795 (0.704 to 0.795)

FF + TP + TV 0.725 (0.591 to 0.829) 0.708 (0.568 to 0.818) 0.763 (0.667 to 0.763)

obtained with FF alone, but improved estimated specificity. Combined TV
with FF yielded comparable performance with FF alone.

Tables 4 and 5 show estimates of performance to predict scores on individ-
ual items in capsulorhexis (CF and RF). Accuracy to classify expert/novice
with the jointly trained algorithm was comparable to that described in Table
2. However, performance of the algorithm was heterogeneous across classes
representing scores on CF and RF. We observed high specificity for score 2/3
and high sensitivity for score 5, suggesting that our findings are strongly influ-
enced by the score imbalance for CF and RF in our data set. It is unlikely that
the model has successfully learned an adequate representation for the severely
under-represented classes. However, confusion matrix analysis presented in Ta-
ble 6 illustrates that the model is less likely to make errors between the extreme
skill ratings. Presumably, misclassifying a CF-5 sample as a CF-4 is a less seri-
ous error than as a CF-2/3. We show that such confusion never happens in the
converged models. Moreover, for both CF and RF evaluations, model misclas-
sifies 2/3 samples as skill rating 4 more often than as a 5. Given such model
behavior, we conjecture that the presented model has learned meaningful rep-
resentation for this task but it is still not adequate enough for operational
use.

4 Discussion

In this study evaluating deep neural networks for objective assessment of
technical skill in capsulorhexis, our experiments using videos of the surgical
field yielded algorithms with a high AUC to predict a binary class label (ex-
pert/novice). Of all the data representations we evaluated, algorithms using
TV, a more structured representation than TP or FF, had the best perfor-
mance. Finally, a model trained to jointly predict a binary skill class and
scores on individual items, CF and RF, performed poorly, likely owing to an
imbalanced data set.
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Table 4: Estimated accuracy of the TCN using tool tip velocities (TV) to
jointly predict a binary skill class label and scores on individual items for
capsulorhexis in ICO-OSCAR:phaco. Numbers in parentheses are 95% confi-
dence intervals; standard deviation reported for micro averaged accuracy. CF:
commencement of flap & follow-through. RF: formation and completion.

Score Item Accuracy Across Folds
Expert / Non-Expert 0.848 (0.796 to 0.900)
CF all - micro 0.657 (0.559 to 0.743)
CF all - macro 0.771 ± 0.091
CF 2/3 0.859 (0.777 to 0.914)
CF 4 0.677 (0.580 to 0.761)
CF 5 0.778 (0.686 to 0.848)
RF all - micro 0.525 (0.428 to 0.621)
RF all - macro 0.684 ± 0.076
RF 2/3 0.717 (0.622 to 0.796)
RF 4 0.596 (0.497 to 0.687)
RF 5 0.737 (0.643 to 0.814)

Table 5: Estimates of TCN performance for score on individual items to assess
capsulorhexis in ICO-OSCAR:phaco (95% confidence intervals in parentheses).
FF = Flow fields; TP = Tool tip positions; TV = Tool tip velocities; AUC =
Area under the receiver operating characteristic curve. CF: Commencement
of flap & follow through; RF: formation and completion

Encoding Sensitivity Specificity AUC

CF = 2/3 0 (0 to 0.215) 1 (0.957 to 1) 0.761 (0.689 to 0.801)

CF = 4 0.641 (0.484 to 0.773) 0.700 (0.575 to 0.801) 0.815 (0.746 to 0.870)

CF = 5 0.870 (0.743 to 0.939) 0.698 (0.565 to 0.805) 0.805 (0.744 to 0.860)

RF = 2/3 0.087 (0.024 to 0.268) 0.908 (0.822 to 0.955) 0.746 (0.662 to 0.791)

RF = 4 0.455 (0.298 to 0.620) 0.667 (0.547 to 0.768) 0.747 (0.665 to 0.814)

RF = 5 0.814 (0.674 to 0.903) 0.679 (0.548 to 0.786) 0.768 (0.694 to 0.831)

Table 6: Confusion matrices for individual item score prediction for both CF
and RF. CF: Commencement of flap & follow through; RF: formation and
completion; GT: Ground truth label; Pred.: Model prediction.

CF Pred. 2/3 Pred. 4 Pred. 5
GT 2/3 0 12 2
GT 4 0 25 14
GT 5 0 6 40

RF Pred. 2/3 Pred. 4 Pred. 5
GT 2/3 2 14 7
GT 4 7 15 11
GT 5 0 8 35

Our findings suggest that structured data representations such as tool tip
trajectories yield better performing models. We relied on crowdsourced anno-
tations of the surgical tool tips to compute velocities. Data may also be struc-
tured in other ways to register or normalize tool trajectories. While videos of
the surgical field are readily available in minimally invasive and microsurgery,
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automated methods are necessary to structure these data at scale. Recent re-
search to identify instruments in cataract surgery suggests that it is feasible to
segment the instrument and extract structured data for skill assessment [18].

Our work extends the automated skill assessment paradigm beyond pre-
dicting a binary class (expert/novice) to a granular evaluation of individual
items on a standardized rating scale. Item-specific assessments can make these
automated methods more relevant to surgical educators and training curricula.
For data-driven interventional healthcare to truly make an impact on improv-
ing the quality and efficiency of care, we believe that surgical technical skill
assessment models should be human-interpretable, i.e., explain predictions in
terms of events or measures that educators and trainees can comprehend and
use to understand their performance,and generate targeted feedback for users
to improve their performance. However, item-specific assessments are inter-
pretable only to the extent of rigor with which the ground truth rating scales
are developed.

Limitations in this study help identify areas for further research. Our data
set had few instances with scores of 2/3 for CF and RF. Reference data sets
that are balanced for skill measures and representative of surgeons across the
skill spectrum are necessary to advance automation of surgical technical skill
assessments. While our data set include ratings from one surgeon, reference
data sets should include ground truth specified by multiple raters to establish
inter-rater reliability.

In conclusion, our study led to validation of a deep neural network to assess
technical skill in capsulorhexis using crowdsourced annotations of instrument
tips in videos of the surgical field.
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