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Abstract

The performance of a vision system on a set of public
benchmarks does not necessarily indicate the expected per-
formance in many practical applications. Indeed, practical
use case such as video surveillance requires a vision system
to parse visual information at a much finer granularity than
in most widely used benchmarks, be flexible enough to deal
with the ‘open-set’ nature of the domain and be transparent
by design such that system performance is explainable and
easily modified as needed.

In this work, we present SAFER, Slots and Fillers for
Explainable Reasoning, for untrimmed activity detection.
SAFER is designed to tackle such demands. SAFER mod-
els a large space of fine-grained activities using a small set
of detectable entities (slots) and their interactions (fillers).
Such a design scales effectively with concurrent develop-
ments of slot detectors involving object detectors, object
parsers and more. Moreover, as SAFER defines a decompo-
sitional structure of activities into detectable slots, simula-
tion can be used for training slot detectors when the desired
slot is otherwise unavailable.

We demonstrate that SAFER extends easily due to its
compositional nature, is more interpretable and most im-
portantly, generalizes more effectively to unseen test sam-
ples. Our evaluations on the challenging DIVA dataset for
activity detection in surveillance show that SAFER gener-
alizes more effectively to unseen videos at test time, improv-
ing the available deep CNN baseline on the DIVA test set
evaluation by 11.4 % with no end-to-end training of activ-
ity classes. Code is available here: (omitted during blind-
review process).

1. Introduction

As with many areas of computer vision, the pattern
recognition capabilities of convolutional neural networks
(CNNs) have led to significant progress on many bench-
marks for activity analysis [2, 17, 30, 33, 35, 38, 39]. How-
ever, these benchmarks typically have one or more of the
following properties: 1) they focus on classification of pre-
segmented video rather than spatial and temporal detection
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Figure 1: SAFER is a structured modeling approach where
activities are defined as time-series of actors, objects, object
parts and interactions. By composing a set of available slots
(detectable entities) and fillers (interaction of slots)
, activities can be quickly defined and detected through in-
terpretable hypothesis testing.

of a class; 2) they are often focused on coarse-level analysis
(e.g. “a person walking”) rather than fine-grained relational
analysis (e.g. “a person dragging a heavy cart”); and 3) they
typically are architected around a pre-defined set of labels
supported by a large and relatively balanced set of exam-
ples for those labels. Taken together, this has led to an em-
phasis on ever more advanced regression-style approaches,
whereby a neural network model is trained from data and
tested (scored) on held-out examples from the same label
set.

There are many cases where these assumptions break
down, either because the application demands fine-grained
detection of a potentially combinatorial number of activi-
ties, and/or because the problem at hand is an “open-set”
problem where new labels may be defined at test time,
and/or because sufficient labeled data is difficult to come
by. For example, in surveillance video, it is quite com-
mon to perform retrospective analysis where the goal is to
find examples of specific activities in a zero-shot manner,
e.g. “locate instances where a light brown package is being

1



placed under a car by a man wearing a gray parka.”
In this paper, we present SAFER, a compositional Slots

And Fillers for Explainable Reasoning approach to activ-
ity detection that is designed to address these limitations.
SAFER models activities as explicit, structured time-series
models of objects, object parts, and relationships among
them. Intuitively, slots denote object-level attributes (e.g.
person, bicycle, car), and fillers are the time-series evolu-
tion of the presence and location of these attributes. Activ-
ities are detected through compositional hypothesis testing
on Slots and Fillers. For example, Riding a Bicycle is de-
fined by a specific spatial and temporal co-occurrence of a
human and a bicycle for an extended period of time.

By driving activities to more fundamental units, a small
number of image-level attributes can be (re)used to define
different activities – e.g. a person entering or exiting a ve-
hicle share the same set of Slots (car, car door, human) but
express opposite temporal behavior (fillers). More gener-
ally, many activities of interest can be modeled as dynamic
interactions of objects – cooking, surgery, construction, and
repair, to name a few. Not only does this play to the power
of a compositional framework that allows re-use of modu-
lar components, but it also supports zero-shot, i.e. at test
time, detection of novel activities, and models are more in-
terpretable as compared to purely data-driven deep mod-
els. Moreover, we demonstrate that such structured mod-
eling approach shows better generalization behavior com-
pared to end-to-end models. Finally, an additional advan-
tage of SAFER is that it provides structured means of break-
ing complex activities down into simple image components
which can be trained using relatively few labels, and which
can sometimes be systematically boosted using simulated
data [18, 31].

In the remainder of this paper, we describe the structure
of SAFER and illustrate its use using the DIVA dataset1

which is a challenging activity detection benchmark with
surveillance videos across multiple scenes. We demonstrate
the effective generalization performance of SAFER on three
evaluation settings. We provide evaluation 1) on the pro-
vided validation set, 2) on Leave-One-Scene-Out evalua-
tion which measures SAFER’s potential to generalize to
novel scenes and 3) on the reserved DIVA test set where
unseen samples from novel scenes compose the majority of
the data. In summary, our contributions are:
• The formal definition of a compositional framework

for activity detection.
• The development of a hybrid deep-learned and hypoth-

esis testing framework for detection.
• The evaluation of this framework with emphasis on

generalization to completely new scenes where we
show over 10% decrease in probability of a missed de-
tection compared to a published end-to-end baseline

1https://actev.nist.gov/

on the benchmark.

2. Related Work
A wide range of prior work exists on activity detection

in the computer vision community but we identify the fol-
lowing categories of approaches as the most relevant to the
presented work: i) pattern recognition based deep CNN ap-
proaches for activity analysis, ii) higher level reasoning of
activities through structured analyses and iii) vision models
exploiting simulation as the means obtaining labeled data
for training.

Deep CNN based approaches for activity analysis:
End-to-end CNN-based pattern recognition models domi-
nate the well known public video benchmarks [2, 17, 30,
33, 35, 38, 39]. However, when the problem domain of
model deployment is wildly different from the representa-
tive set found in the available training data, such models fail
to generalize to the desired domain. In fact, an activity de-
tection system [36] that has proven to be effective across
multiple popular public benchmarks such as [10, 14] does
not generalize well to activity detection in surveillance en-
vironments as demonstrated in this work and in [7]. Spatio-
temporal action localization approaches such as [6, 16] alle-
viate the assumption that the activities are already contained
in the observed video (hence performing activity detection).
Nonetheless, most instances are either YouTube videos or
structured recordings where the action foreground covers
a relatively large portion of the observed image sequence.
Where as in our application in the DIVA dataset, only 3 %
of the image consists of relevant foreground [7]. The most
relevant prior work is [7] as the authors exploit object de-
tections to generate activity proposals on which a variant
of I3D [2] is trained in an end-to-end fashion to classify
the spatio-temporally localized images. Our model is sim-
ilar in that objects (slots in our formulation) form the basis
of activity proposals but SAFER framework further models
activities as direct composition of slots and fillers instead
of learning to classify them using end-to-end CNNs. In our
formulation, end-to-end pixel wise mapping happens at the
slot level, not at the activity class level which we believe
transfers more effectively given completely novel samples.

Higher level reasoning of activities through struc-
tured analyses: Abstracting out lower level visual infor-
mation with higher order attributes has demonstrated ef-
fective knowledge transfer [19, 21, 37]. Attributed based
models for video understanding [29, 34] share the common
motivation. In SAFER formulation, higher level abstrac-
tion happens at the slot level. For example, in our formu-
lation, we treat opened-door as a detectable slot but it can
alternatively be defined as an attribute of a vehicle. Mod-
ule network [1] and its variants [12, 13, 15, 22] present a
compositional and modular reasoning of visual information
albeit for a different application. Temporal Modular Net-



work [20] extends module networks to the video domain
and demonstrates efficient re-use of visual concepts by ex-
ploiting compositionality of the approach. SAFER formu-
lation is by design compositional where we detect activities
by composing available slots and fillers.

Synthetic data for training: Given the ability to pro-
duce fine-grained scene annotations at scale, simulation has
become a popular source of obtaining labeled data for train-
ing models in wide variety of applications involving ob-
ject detection [8], segmentation [26, 28] and object parsing
[18, 32]. Development of tools for simulation [3, 25] and
domain adaptation approach such as [11] offer strong moti-
vation to exploit simulation further. SAFER defines activ-
ities through slots where simulation can be used to obtain
labeled training data when the slot detector is otherwise un-
available. We believe slot synthesis is a more effective use
of simulation than simulating fine-grained interactions of
multiple objects [27].

3. Methods

As with recent methods for object detection [4, 5, 9], we
frame activity detection as a sequence of first generating ac-
tivity proposals followed by the filtering and refinement of
those proposals into the final activity detections. In the fol-
lowing sections, we first describe proposal generation and
then illustrate filtering and refinement starting with a single
slot with a trivial filler then gradually extend to activities in-
volving interactions of actors (objects) including spatial and
the temporal relations between them.

3.1. Proposals

Given an image sequence I = [I1, I2, . . . , IT ], we rep-
resent an activity proposal A as a temporal sequence of
bounding box locations, A = [Bt...Bt∗ ], 1 ≤ t < t∗ ≤ T
within I. Each bounding box B in turn consists of a col-
lection of one or more slot-specific bounding boxes, Bj ,
j ∈ S where S is the set slots which may include ob-
jects, object parts, or object configurations for which a de-
tector is available. For each slot j ∈ C and correspond-
ing bounding box Bj , a slot detector provides a detection
score Sj(It, B

j
t ) = P (j|It(Bj)) for that class. In practice,

Sj(It, B
j
t ) will be the output of a CNN with input It(Bj).

The SAFER formulation requires spatio-temporally lo-
calized regions of video. Temporal grouping (tracking) of
each slot j or existing action foreground segmentation ap-
proaches such as [6, 36] provide an initial set of activity
proposals AH = {A1, . . . AN} where N is the total num-
ber of activity proposals.

3.2. Evaluating Proposals with Slots and Fillers

3.2.1 Basic Hypothesis Test for Presence of Object

To establish the basic framework, suppose we have an ac-
tivity hypothesis A = [Bj

1...B
j
T ] consisting of a sequence

of t temporally grouped bounding boxes. We wish to evalu-
ate the likelihood of A being generated by slot j and a filler
defining the persistence of slot j throughout the proposal.
Consider the following two hypotheses:

1. A is due to j (i.e. human exists).
2. A is due to ¬j (i.e. human does not exists).

The likelihood of the first hypothesis can be written as:

P (A|j) =
T∏

t=1

P (I(Bj
t )|j) (1)

and the alternative hypothesis as:

P (A|¬j) =
T∏

t=1

P (I(Bj
t )|¬j) (2)

We can not explicitly compute the probability distributions
P (I(Bj

t )|j) or P (I(Bj
t )|¬j). However, we only wish to do

model selection and thus compare the ratio of the probabili-
ties. This can be performed by the log-likelihood ratio-test:

T∏
t=1

P (I(Bj
t )|j) >

T∏
t=1

P (I(Bj
t )|¬j) (3)

T∑
t=1

log
P (I(Bj

t )|j)
P (I(Bj

t )|¬j)
> τ (4)

This leads to a formulation that the sum of log likelihood
ratios or log evidence should be greater than a design pa-
rameter τ . Applying Bayes rule to the ratio in Eq. 4

P (I(Bj
t )|j)

P (I(Bj
t )|¬j)

=
P (j|I(Bj

t ))P (¬j)
P (¬j|I(Bj

t ))P (j)

=
P (j|I(Bj

t ))

1− P (j|I(Bj
t ))
· P (¬j)
P (j)

(5)

This means that in the SAFER framework, we need to
be able to compute P (j|I(Bj

t )) = Sj(It, B
j
t ) to perform

hypothesis testing for presence of slot j given a proposal A.
As discussed earlier, Sj(It, B

j
t ) is an output of a detector

for slot j. It is worth noting the final term is the prior odds
ratio which represents the quality of proposals.

3.2.2 Co-occurrence of Slots

Co-occurrence of slots contains potentially very discrimina-
tive information for activity detection and can be composed



in a straight forward manner. For example, a proposal se-
quence that contains both a human and a bicycle is highly
likely to be a Riding sequence from the DIVA dataset where
as a sequence with human and a heavy object is likely a
Transport Heavy Carry instance.

Consider trying to detect the co-occurrence of slots j and
k. Given activity proposalA, we test the following hypothe-
ses:

1. A is due to j and k.
2. X is due to ¬j and ¬k.
3. X is due to j and ¬k.

We omit the fourth case (¬j and k) because we assume that
j is the main object of interest (for example, the human in
many interactions), which we first test for using the results
of the previous subsection. Similar to the derivation in Eq.
4, we compare the first and the second hypotheses:

T∑
t=1

log
P (I(Bj

t )|j)P (I(Bk
t )|k)

P (I(Bj
t )|¬j)P (I(Bk

t )|¬k)
> τ (6)

Using Bayes rule again we derive:

T∑
t=1

log
Sj(It, B

j
t )

1− Sj(It, B
j
t )
+

T∑
t=1

log
Sk(It, B

k
t )

1− Sk(It, Bk
t )

+ C > τ

(7)

where C is a constant factor (sum of each object’s prior
log ratios). The additional hypothesis test between 1 and 3
yields:

T∑
t=1

log
P (I(Bj

t )|j)P (I(Bk
t )|k)

P (I(Bj
t )|j)P (I(Bk

t )|¬k)
> τ

=

T∑
t=1

log
Sk(It, B

k
t )

1− Sk(It, Bk
t )

> τ

(8)

The intuition for the additional test in Eq. 8 is that the evi-
dence of the first hypothesis may be larger than the second
hypothesis but the third hypothesis is true. Returning to the
Riding example, such scenario would be the ‘Human with-
out a bicycle’ case and without the second test, false posi-
tive detections containing only humans in the proposal may
be a common failure mode. Within the SAFER framework,
co-occurrences of more than two slots is a straightforward
extension of the previous derivation and can be composed
easily.

3.2.3 Spatial Relations Between Slots

We extend the aforementioned case to include a filler condi-
tion modeling the spatial relation of slots. Suppose a partic-
ular spatial configuration C(Bj

t , B
k
t ) exists for slots j and

(a) (b)

Figure 2: Effects of different designs of filler modeling spa-
tial relation of slots. (a) Distributions of relative positions
of humans and objects, (b) conditioned on the direction of
human motion. Blue: Distribution computed for Trans-
port Heavy Carry from DIVA, Red: from Pulling. Model-
ing spatial relations between humans and objects provides
strong cues for activity detection. Best viewed in color.

k. For example, C(Bj
t , B

k
t ) may represent a relationship

that j is ‘in front of’ of k.
Then, we can learn the probability distributions

P (Bk
t |B

j
t , C(B

j
t , B

k
t ) = 1) and P (Bk

t |B
j
t , C(B

j
t , B

k
t ) =

0). With this, spatial relations between slots can be com-
posed as an additional term in the hypothesis test by adding
the log-likelihood ratio:

T∑
t=1

log
P (Bk

t |B
j
t , C(B

j
t , B

k
t ) = 1)

P (Bk
t |B

j
t , C(B

j
t , B

k
t ) = 0)

(9)

The intuition here is that the spatial relations between slots
may discriminate activities with identical slots. For exam-
ple, Transport Heavy Carry and Pulling activities by defini-
tion consist of identical slots (a human and a heavy object)
but the spatial relation between the slots can discriminate
the two classes. In implementation, motion cue information
is used to extract approximate relative position between ob-
jects and humans. Figure 2 illustrates the effect of modeling
spatial relations to distinguish between the two classes.

3.2.4 Temporally Dynamic Slots: Appearing and Dis-
appearing

Consider an activity proposal A which contains a tempo-
ral state change in slot j. More concretely, it is a sequence
where we observe an attribute j until some time T ∗ and do
not detect j for the remainder of the proposal (j disappear-
ing) or vice-versa (j appearing). The derivation is similar to
Section 3.2.1 except the sum of evidence is temporally split



into two portions:

T∗∑
t=1

log(
Sj(It, B

j
t )

1− Sj(It, B
j
t )
· P (¬j)
P (j)

) +

T∑
t=T∗+1

log(
1− Sj(It, B

j
t )

Sj(It, B
j
t )

· P (j)
P (¬j)

) > τ

(10)

The term P (j) represents the prior of the attribute j and
assuming an unbiased distribution of attributes such that
P (j)
P (¬j) = 1, we can rewrite Eq. 10 as follows:

T∑
t=1

V j
c (t) · log(

Sj(It, B
j
t )

1− Sj(It, B
j
t )
) > τ

V j
c (t) =

{
1 , if t < T ∗

−1 , else

(11)

where V j ∈ RT is a vector representing a filler that models
disppearance of j. V j is the expected temporal behavior of
j or the template sequence of j. Note that the sum in 3.2.1
is a specific case of Eq. 11 where V j is equal to 1 for all
timesteps.

3.3. Learning

In SAFER, activities are detected by composition of hy-
pothesis tests that are defined by slots and fillers. This
allows activities to be defined ‘on-the-fly’ without end-to-
end training. Instead, we map activity pixels to class labels
given appropriate detectors for slots and the means to com-
pose temporal interactions with fillers. Therefore, learning
process only involves gathering or training a set of detectors
P (j|I(Bj)), i.e. slot detectors, which are typically sim-
pler and thus require fewer labeled examples. High level
slots such as detecting a person or a car can be trained from
publicly available data sets. However, more detailed slots
describing a particular state of object parts are sometimes
needed to enable SAFER to detect activities at a more gran-
ular level. When the desired slot detector is unavailable due
to a lack of sufficient labeled data, we exploit simulation to
train a detector. A full list of the slots, fillers and activity
definitions employed in this paper is provided in the sup-
plementary material.

4. Activity Detection Evaluation
The ability of a model to generalize to unseen data is ar-

guably the most important metric when evaluating a model
built for activity detection. Our model was designed under
the assumption that invariance to the observed scene is the
most desirable parameter. Here, we present results of our
model in two scenarios: 1) under the provided benchmark,
evaluating on videos from the same scenes (camera loca-
tions) in the training set, albeit at different times, and 2) in
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Figure 3: In the DIVA dataset, variation across scenes are
severe but instances within the same scene share visual sim-
ilarities. Experiment design to explicitly test for detec-
tion performance on unseen scenes. The figure depicts the
LOSO-0000 experimental setup. Yellow: training, Green:
model selection, Blue: Inference. Best viewed in color.

a custom Leave-One-Scene-Out (LOSO) evaluation, using
videos from disparate scenes for training and testing. We
show how SAFER outperforms deep CNN baselines by a
larger margin on the LOSO evaluations than in the standard
setup, leading us to conclude that it has a higher capacity
for generalization to novel data. Furthermore, we demon-
strate that the interpretable latent state in SAFER allows to
improve results in a fashion that can’t be done on black-box
deep models.

4.1. DIVA Dataset Evaluation Settings

The DIVA dataset is an untrimmed activity detection
dataset that requires both spatial and temporal localization
of predefined set of activities. The videos originate from the
VIRAT dataset [24] and annotations more suitable for activ-
ity detection were collected by the IARPA DIVA program.
The DIVA dataset consists of 64 training and 54 validation
videos with full set of annotations. 96 videos are reserved
for the held out test set such that associated annotations are
made unavailable.

DIVA test evaluation favors models that generalize ef-
fectively to unseen data given that 74 of the 96 videos are
from novel scenes that are not part of the provided available
5 scenes during training. As illustrated in Figure 3, there
exists large variation across different scenes including no-
ticeable discrepancies in viewpoint, scale, level of occlusion
and actor identities. However, intra-scene activity instances
are visually comparable. Under such conditions, end-to-end
models are more likely to overfit the available training data.
To explicitly test for model generalization, we perform ex-
periments on the LOSO setup. An illustration of the LOSO
experimental setup is presented in Figure 3. Under LOSO,
a sample at test time strictly comes from a held-out scene.



Pmiss@.15rfa Pmiss@1rfa
TRN SAFER TRN SAFER

Closing 0.909 0.955 0.720 0.765
ClosingTrunk 0.810 0.952 0.667 0.762

Entering 0.676 0.667 0.577 0.183
Exiting 0.831 0.789 0.738 0.231

OpenTrunk 0.591 0.818 0.409 0.818
Opening 0.921 0.921 0.756 0.771

HeavyCarry 0.677 0.484 0.452 0.323
Pull 0.739 0.304 0.304 0.174

Riding 0.864 0.545 0.456 0.364
Talking 0.805 0.683 0.683 0.414

Mean Pmiss 0.782 0.709 0.576 0.480

Table 1: Performance on provided validation set of the
DIVA dataset which contains identical set of scenes as the
train set.

4.2. Activity Detection Metric with Operational Use
In Surveillance

We adopt the same metric as [7, 23] that is the probabil-
ity of missed detection (Pmiss) at multiple false alarm rates
(rate of false-alarm, rfa). First, one-to-one correspondence
between pairs of ground truth and system output activity in-
stance is found. Then, any unmatched detected prediction
becomes a false positive detection while any ground truth
instance without a prediction match is considered a miss
detection. The optimal matching is found by the Hungarian
Algorithm. We refer to the TRECVID 2017 [23] for details
about the evaluation metric. The evaluation software used
in this work is provided by the independent evaluation team
through Github2.

4.3. System Performance

DIVA Validation (Mixed Scene) Evaluations: We first
provide our activity detection results on the DIVA validation
set in Table 1 that compares the baseline Temporal Relation
Network (TRN) [38] approach to SAFER. There does not
exist published or publicly available per-activity baseline
results for this dataset at the time of the submission thus
requiring the additional TRN baseline. We selected a rep-
resentative subset of the activities involving object interac-
tions in the “Winter 18 ActEV Prize Challenge” evaluation
defined by the ActEV Challenge. Both TRN and SAFER
are evaluated on a set of identical proposals. We provide
probability of missed detection, Pmiss, at two operating
points, 0.15 rfa and 1 rfa, for each activity.

We observe consistent improvements in activity detec-

2https://github.com/usnistgov/ActEV Scorer/tree/v0.3.0

Val.
@ .15 rfa

Val.
@ 1 rfa

Test
@ .15 rfa

LOSO
@ 1 rfa

R-C3D [36] 0.863 0.720 0.907 x
TR-I3D [7] 0.618 0.441 x x

TRN [38] 0.717 0.574 0.872 0.853

SAFER 0.709 0.535 0.793 0.563

Table 2: Summary of comparisons across available, imple-
mented baselines with SAFER under different evaluations.
Evaluations on LOSO and the DIVA test set favors SAFER
which generalizes more effectively than other approaches
but TR-I3D [7] still provides a very strong baseline for the
validation partition evaluation. For activities not modeled
with SAFER, we merge predictions of TRN to produce a
complete set of predictions.

tion performance on both operational points but the overall
gap in performance is not significant. We believe under the
mixed scene set up, TRN baseline performs relatively well
given the visual similarly between samples during training
and inference.

Leave-One-Scene-Out (LOSO) Evaluations: We be-
lieve one of the major benefits of SAFER for activity detec-
tion is its ability to generalize to entirely unseen data and
mixed scene evaluation fails to explicitly measure this di-
mension of the model. Thus, quantitative experimental re-
sults for LOSO evaluation of both models are reported in
Table 3.

Under LOSO evaluation, the gap in performance be-
tween the TRN baseline and SAFER is considerably larger
compared to the mixed scene results in Table 1. In fact,
the TRN baseline fails to generalize at all for many activity
classes and such generalization behavior is observed consis-
tently across multiple scenes. At the same operating point
of 1 rfa, SAFER outperforms the TRN baseline by 0.289
points on average whereas the gap is 0.095 in the mixed
scene set up. The average of mean Pmiss across five scenes
for SAFER is 0.563 at 1 rfa

DIVA Test Evaluation: The DIVA test set favors mod-
els that generalizes more effectively as the evaluation is
mostly performed on samples from novel scenes. To fur-
ther demonstrate that SAFER performs well on de-novo in-
stances, we report our DIVA test set experimental results
using the public ActEV leaderboard3 in Table 2. We demon-
strate that SAFER improves the baseline approach of [36]
by 0.114 which we believe is due to SAFER’s higher capac-
ity for generalization. Compared to presented quantitative
analyses in this work, per-activity results are not made avail-
able through the leaderboard system. The reported metric is
a weighted average of Pmiss at 0.15 rfa. To the best of our
knowledge, there does not yet exist published results consis-

3https://actev.nist.gov



Held out scene: 0000 0002 0400 0401 0500

Model:
TRN

@ 1 rfa
SAFER
@ 1 rfa

TRN
@ 1 rfa

SAFER
@ 1 rfa

TRN
@ 1 rfa

SAFER
@ 1 rfa

TRN
@ 1 rfa

SAFER
@ 1 rfa

TRN
@ 1 rfa

SAFER
@ 1 rfa

Closing 0.977 0.636 0.905 0.889 0.762 0.643 0.892 0.814 0.857 0.857
Closing Trunk 1 0.500 0.833 0.833 0.900 0.500 0.967 0.867 n/a n/a

Entering 1 0.143 0.733 0.578 0.684 0.105 0.792 0.226 0.333 0
Exiting 1 0.095 0.950 0.750 0.882 0.411 0.827 0.269 1 0.429

Open Trunk 0.857 0.857 1 0.833 1 0.769 1 0.967 n/a n/a
Opening 0.953 0.535 0.900 0.900 0.829 0.634 0.926 0.863 1 0.667

HeavyCarry 0.852 0.556 1 1 1 0.625 0.742 0.742 1 1
Pull 0.875 0.375 1 1 0.684 0.474 1 0.703 n/a n/a

Riding 0 0 0.826 0.304 0.333 0.333 1 0.455 0.600 0.600
Talking 1 0.821 1 0.550 1 0 1 0.625 n/a n/a

Mean Pmiss 0.792 0.451 0.910 0.673 0.825 0.449 0.913 0.653 0.827 0.592

Table 3: Comparison of TRN and SAFER activity detection performance under the LOSO experimental setup. We observe
larger performance gains due to better generalization of SAFER. n/a refers to the case when there does not exist a single
instance of that activity in the scene.

(a) (b) (c)

Figure 4: Without modeling the spatial relations between
slots, we cannot distinguish Pull from HeavyCarry. (a) In-
stance of Pull classified as HeavyCarry. (b) Instance of
HeavyCarry classified as Pull. Both cases are detected
correctly with spatial reasoning. (c) Failure case where a
HeavyCarry instance is classified as Pull even with the addi-
tional spatial constraint. Note that the location of the heavy
object is relatively lower than human which is common for
Pulling instances.

tent with the public leaderboard evaluations other than the
[36] baseline result provided by the organizers of the leader-
board. To generate a complete set of predictions covering
all the activities defined by each evaluation, we generate
predictions using the presented TRN baseline for a set of
activities that we do not yet have SAFER formulation for.

4.4. Interpretable Diagnosis of Detections

Another aspect of SAFER is that it is interpretable by de-
sign. SAFER enables more explicit reasoning about model
predictions under a coarse-to-fine design paradigm during
both implementation and diagnosis stages. During our im-
plementation of SAFER, we exploited the interpretable as-
pect of our predictions to initially design coarse detectors

(a) (b) (c)

Figure 5: Examples of false positive Entering and Exiting
detections from SAFER due to missed slot detection.

no spatial constraint spatial constraint
Pull 0.565 0.304

Heavy Carry 0.645 0.484

Table 4: Detection performance of Pulling and Heavy Carry
at Pmiss@0.15 rfa on the DIVA validation data.

and gradually converged towards more fine-grained detec-
tors by composing additional slots and fillers. For example,
consider the set of slots, {human, box}, and a filler repre-
senting the co-occurrence of two slots. Under such defini-
tions, activities Pulling and Transport Heavy Carry are en-
tirely ambiguous under SAFER. Resulting ambiguities are
illustrated in Figure 4. Additional filler modeling spatial
relations of the two slots enables discrimination at a finer
scale, leading to more accurate detection results as shown
in Table 4.

The visualization in Figure 4c represents the incorrectly
detected Pulling instance even with the spatial constraint.
We note that the model’s incorrect prediction is inter-



Pm@ 0.15 rfa Pm@ 1 rfa
with GT w/o GT with GT w/o GT

Entering 0.394 0.667 0.127 0.183
Exiting 0.677 0.789 0.200 0.231

Table 5: Activity detection performance of Entering and
Exiting on the DIVA validation data given ground truth ob-
ject locations and identities. GT: SAFER with ground truth
information.

pretable given the relatively lower position of the carried ob-
ject which is a common spatial location of boxes in Pulling
instances. We believe that modeling human pose as a Slot
will resolve this ambiguity but we reserve that for future
work.

Representational power of SAFER grows effectively as
detectors for slots continue to improve. At the same time,
we identify errors in slot detectors as a common source of
missed/false detections in DIVA. Consider Entering and Ex-
iting from a vehicle. They are defined as a human appearing
or disappearing near a stationary vehicle. Figure 5 illus-
trates false positive detections for both cases found in the
predictions. Due to heavy occlusion by a vehicle, human is
barely visible and at which point, detector fails to locate the
human. Such cases may be removed using a visual tracker
which may re-identify the object. Table 5 demonstrates the
upper-bound of SAFER for the example activities where we
perform activity detection with object identifications pro-
vided by ground truth.

4.5. Synthesis of Slots: Vehicles Parts

Interesting aspect of SAFER is how slots naturally de-
fine dimensions for data synthesis. When more detailed
slots describing a particular object configuration is required
for more granular analysis, simulation can effectively pro-

Trunks (19944 crops) Doors (74576 crops)
# Real Crops Acc. # Real Crops Acc.
0 0.655 0 0.599
2 0.675 2 0.631
50 0.721 150 0.686
100 0.718 300 0.706
150 0.781 600 0.772
330 0.805 1234 0.806
660 0.838 2468 0.796
660, No Sim. 0.615 2468, No Sim. 0.710

Table 6: Classification accuracy of models trained on a sim-
ulated dataset. Having a mix of real and simulated images
greatly improves the model’s generalization capability. The
amount of real training samples is varied from 0 to approx-
imately 3 % of the generated simulation data.

Figure 6: The simulated dataset of vehicles with opened or
closed vehicle parts is shown on the left side. The two crops
on the right of the figure represent samples from the DIVA
dataset. Best viewed in color.

duce labeled data to train such slot detectors. We demon-
strate slot simulation by learning to detect opened-door and
opened-trunk detectors through simulation using UnrealCV
[25]. The dataset includes 19,944 rgb crops of vehicles
with opened/closed trunks and 74,576 rgb crops of opened/
closed doors. Examples of simulated crops are shown in
Figure 6.

We fix the model presented in [18] as our detection
model as it has successfully demonstrated training models
using simulated data for inference tasks on real images. As
shown in Table 6, by introducing simulation data for train-
ing, the opened-trunk and opened-door classification results
improve by 22.3 % and 9.6 % respectively. Obtaining detec-
tors for very fine-grained slots greatly increases fine-grained
activity detection potential of SAFER and we wish to in-
vestigate further of bringing more simulation into activity
detection systems through SAFER.

5. Conclusion

SAFER is a framework where complex activities are
modeled as explicit structured time-series of objects, ob-
ject parts and relationships among them. We demonstrated
on multiple evaluation settings using the DIVA dataset that
compositional construction of activities through slots and
fillers leads to detection models that generalizes more ef-
fectively to unseen data at test time. As available detectors
and means of slot synthesis mature more as the field pro-
gresses, we believe SAFER is a powerful framework for ac-
tivity analysis under structured environments and zero-shot
applications where generalization is a significant measure
of success.



References
[1] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural

module networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016. 2

[2] J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 6299–6308, 2017. 1, 2

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun. Carla: An open urban driving simulator. In Con-
ference on Robot Learning, 2017. 3

[4] R. Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 3

[5] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár,
and K. He. Detectron. https://github.com/
facebookresearch/detectron, 2018. 3

[6] G. Gkioxari and J. Malik. Finding action tubes. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 759–768, 2015. 2, 3

[7] J. Gleason, R. Ranjan, S. Schwarcz, C. Castillo, J.-C. Chen,
and R. Chellappa. A proposal-based solution to spatio-
temporal action detection in untrimmed videos. In 2019
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 141–150. IEEE, 2019. 2, 6

[8] H. Hattori, V. Naresh Boddeti, K. M. Kitani, and T. Kanade.
Learning scene-specific pedestrian detectors without real
data. In CVPR, 2015. 3

[9] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on com-
puter vision, pages 2961–2969, 2017. 3

[10] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles.
Activitynet: A large-scale video benchmark for human ac-
tivity understanding. In CVPR, 2015. 2

[11] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko,
A. Efros, and T. Darrell. Cycada: Cycle-consistent adversar-
ial domain adaptation. In ICML, 2018. 3

[12] R. Hu, J. Andreas, T. Darrell, and K. Saenko. Explainable
neural computation via stack neural module networks. In The
European Conference on Computer Vision (ECCV), Septem-
ber 2018. 2

[13] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko.
Learning to reason: End-to-end module networks for vi-
sual question answering. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 804–813,
2017. 2

[14] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev,
M. Shah, and R. Sukthankar. THUMOS challenge: Action
recognition with a large number of classes, 2014. 2

[15] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman,
L. Fei-Fei, C. Lawrence Zitnick, and R. Girshick. Inferring
and executing programs for visual reasoning. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 2989–2998, 2017. 2

[16] V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid.
Action tubelet detector for spatio-temporal action localiza-

tion. In Proceedings of the IEEE International Conference
on Computer Vision, pages 4405–4413, 2017. 2

[17] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, pages
1725–1732, 2014. 1, 2

[18] C. Li, M. Z. Zia, Q.-H. Tran, X. Yu, G. D. Hager, and
M. Chandraker. Deep supervision with intermediate con-
cepts. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2018. 2, 3, 8

[19] W. Li and N. Vasconcelos. Recognizing activities by attribute
dynamics. In Advances in Neural Information Processing
Systems, pages 1106–1114, 2012. 2

[20] B. Liu, S. Yeung, E. Chou, D.-A. Huang, L. Fei-Fei, and
J. Carlos Niebles. Temporal modular networks for retrieving
complex compositional activities in videos. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 552–568, 2018. 3

[21] J. Liu, B. Kuipers, and S. Savarese. Recognizing human ac-
tions by attributes. In CVPR 2011, pages 3337–3344. IEEE,
2011. 2

[22] D. Mascharka, P. Tran, R. Soklaski, and A. Majumdar.
Transparency by design: Closing the gap between perfor-
mance and interpretability in visual reasoning. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 4942–4950, 2018. 2

[23] NIST. Trecvid 2017 evaluation for surveillance event
detection. https://www.nist.gov/itl/iad/mig/trecvid-2017-
evaluation-surveillance-event-detection, 2017. 6

[24] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T.
Lee, S. Mukherjee, J. Aggarwal, H. Lee, L. Davis, et al.
A large-scale benchmark dataset for event recognition in
surveillance video. In CVPR 2011, pages 3153–3160. IEEE,
2011. 5

[25] W. Qiu, F. Zhong, Y. Zhang, S. Qiao, Z. Xiao, T. S. Kim, and
Y. Wang. Unrealcv: Virtual worlds for computer vision. In
ACM MM, 2017. 3, 8

[26] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing for
data: Ground truth from computer games. In ECCV, 2016. 3

[27] C. Roberto de Souza, A. Gaidon, Y. Cabon, and
A. Manuel Lopez. Procedural generation of videos to train
deep action recognition networks. In CVPR, 2017. 3

[28] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M.
Lopez. The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes. In CVPR,
2016. 3

[29] G. A. Sigurdsson, O. Russakovsky, and A. Gupta. What ac-
tions are needed for understanding human actions in videos?
In Proceedings of the IEEE International Conference on
Computer Vision, pages 2137–2146, 2017. 2

[30] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In Advances
in neural information processing systems, pages 568–576,
2014. 1, 2

[31] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani,
C. Anil, T. To, E. Cameracci, S. Boochoon, and S. Birch-
field. Training deep networks with synthetic data: Bridging

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron


the reality gap by domain randomization. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, CVPR Workshops 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 969–977, 2018. 2

[32] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black,
I. Laptev, and C. Schmid. Learning from synthetic humans.
In CVPR, 2017. 3

[33] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. Val Gool. Temporal segment networks: Towards good
practices for deep action recognition. In ECCV, 2016. 1, 2

[34] X. Wang and A. Gupta. Videos as space-time region graphs.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 399–417, 2018. 2

[35] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. Rethinking
spatiotemporal feature learning: Speed-accuracy trade-offs
in video classification. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 305–321, 2018.
1, 2

[36] H. Xu, A. Das, and K. Saenko. R-c3d: Region convolutional
3d network for temporal activity detection. In Proceedings
of the International Conference on Computer Vision (ICCV),
2017. 2, 3, 6, 7

[37] J. Zheng, Z. Jiang, and R. Chellappa. Submodular attribute
selection for visual recognition. IEEE transactions on pat-
tern analysis and machine intelligence, 39(11):2242–2255,
2017. 2

[38] B. Zhou, A. Andonian, A. Oliva, and A. Torralba. Temporal
relational reasoning in videos. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 803–
818, 2018. 1, 2, 6

[39] M. Zolfaghari, K. Singh, and T. Brox. Eco: Efficient con-
volutional network for online video understanding. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 695–712, 2018. 1, 2


