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ABSTRACT

In this paper, we release the Simulated Articulated VEhicles
Dataset (SAVED) which contains images of synthetic vehi-
cles with moveable vehicle parts. SAVED consists of im-
ages that are much more relevant for vehicle-related pattern-
recognition tasks than other popular pretraining datasets such
as ImageNet. Compared to a model initialized with ImageNet
weights, we show that a model pretrained using SAVED leads
to much better performance when recognizing vehicle parts
and orientation directly from an image. We also find that a
multi-task pretraining approach using fine-grained geometric
signals available in SAVED leads to significant improvements
in performance. We release SAVED and instructions on how
to simulate a custom dataset here1.

Index Terms— Synthetic data, neural networks, vehicle
pose estimation, vehicle parts, cars

1. INTRODUCTION

Annotating large scale datasets may be prohibitively expen-
sive or practically impossible depending on the problem do-
main. For example, while annotating a presence of a common
object in an image may be suitable for large scale data collec-
tion with a crowd sourced workforce, collecting detailed 3D
information of object parts from real images at scale is far
more challenging. When access to a large annotated dataset
is limited, practitioners typically rely on pretraining a deep
network model on a large scale, but unrelated, dataset and
later finetune the poorly initialized model using a small set of
annotated samples from the target domain. Our experiments
show that this standard practice often leads to models with
sub-optimal performance.

In this work, we explore the use of synthetic data to ad-
dress this challenge. There is growing evidence that a dataset
with both real and synthetic images can successfully train
deep network models for various vision problems [1, 2, 3, 4].
Given the advancements in graphical renderers such as Un-
real Engine 4 and Blender [5] coupled with software devel-
opments such as UnrealCV [6], researchers now have direct

1https://taesoo-kim.github.io/

Fig. 1: SAVED is the first large scale dataset of synthetic ve-
hicles with articulated vehicle parts such as doors and trunks.
Top: vehicles with articulated parts from the DIVA-Doors
dataset, Bottom: simulated instances with domain random-
ized RGB examples, depth maps, surface normals and seman-
tic segmentation labels (from left to right).

access to a simulation engine that can generate large scale
datasets. Compared to real datasets, the cost of annotating a
very large dataset is inconsequential. Moreover, most simu-
lation engines provide information about surface normals and
depth maps of the rendered scene in addition to RGB images.
Many of such rendering parameters and other auxiliary infor-
mation that can be extracted from the simulator provide a rich
set of ‘free’ annotations that are difficult to obtain in natural
images.

In this paper, we present a synthetic dataset, Simulated
Articulated VEhicles Dataset (SAVED), which is used to train
a model for localizing vehicle parts (doors and trunks) and
estimating vehicle orientation. Though there are real [7, 8,
9] and simulated [10, 11] datasets with vehicle annotations,
the granularity of annotations are insufficient for fine-grained
analysis of a vehicle’s state. Using SAVED, we present the
first approach to recognize parts of vehicles and their states
(i.e. opened-doors and closed-trunks) from natural images.
We demonstrate performance improvements of image classi-



fication through pretraining on a large simulated dataset be-
fore finetuning on a smaller set of real images. Interestingly,
we show that providing additional supervision with geometric
signals during pretraining leads to better performance.

In summary, the following are contributions of this paper:

1. The Simulated Articulated VEhicles Dataset (SAVED):
A large scale dataset of rendered synthetic vehicle im-
ages with fine-grained vehicle part and 3D geometry
annotations.

2. The first model trained using simulated data to recog-
nize vehicle parts and orientation.

3. Experimental evidence that intermediate supervision
with geometric signals (i.e. surface normals and depth
maps) is critical when pretraining a model using a
simulated dataset.

2. RELATED WORK

Learning from simulation. Researchers have successfully
trained various computer vision models using simulated data
for applications in stereo-vision [12], semantic segmentation
[13, 14] and 3D pose estimation [3, 15, 16, 4]. For such
tasks, groundtruth annotations on real images are insufficient
to train deep neural networks. Using a simulation engine with
a software such as UnrealCV [6], groundtruth data that is oth-
erwise difficult to obtain can be generated in large amounts
with significantly less effort. SAVED has the same advantage
and it provides accurate 3D information of vehicle parts.
Related simulated vehicle datasets. The most notable sim-
ulated datasets with vehicle annotations are SYNTHIA [11]
and V-KITTI [10]. Viewpoints are limited in these datasets
because samples are captured from the point of view of a
driver. Hence, the virtual vehicles found in the two datasets
are not well suited for training fine-grained models for rea-
soning about vehicle parts. With more diverse camera view-
points and articulated vehicle parts, SAVED is a better dataset
to train models for problems such as 3D pose estimation and
recognizing parts of vehicles.
Simulation to real transfer. Several studies have shown that
classifiers trained using simulated images often require meth-
ods for simulation-to-real transfer to perform well on real im-
ages [17]. We show in our experiments that the use of geomet-
ric signals during pretraining with simulation data helps mit-
igate the issue of domain shift. When there are small number
of labeled real instances, we show that a simple approach of
pretraining using simulated instances and then later finetun-
ing with real examples leads to best results. We also show that
domain randomization techniques [18] as well as intermedi-
ate supervision [4] are important when training with synthetic
datasets.

Fig. 2: The custom Blender plugin for annotating vehicle
parts such as doors and trunks.

3. THE SIMULATED ARTICULATED VEHICLES
DATASET (SAVED)

We describe the details of our Simulated Articulated VEhi-
cles Dataset (SAVED). In contrast to existing real or syn-
thetic datasets of vehicles, the simulated instances in SAVED
have moveable parts such as doors, trunks and hoods with
ground truth annotations on how much the vehicle part is ro-
tated around its axis. As illustrated in Figure 1, SAVED pro-
vides per-pixel depth, surface normal and semantic part la-
bels.

We use Unreal Engine 4 as our renderer of choice and use
UnrealCV [6] to interact with the virtual environment to sim-
ulate and capture data. We simulate vehicles by rendering the
3D CAD models provided by the ShapeNet dataset [19]. The
synthetic vehicles found in ShapeNet do not provide vehicle
part annotations as standard. Thus, we manually annotated
doors, trunks and hoods of vehicles in order to articulate them
as needed using the simulator.

For this purpose, we built a custom Blender plugin (de-
picted in Fig. 2) to label the sections of the mesh as its cor-
responding part. To maximize diversity of simulated vehi-
cle appearance in the dataset, we search for similar vehicles
via hierarchical clustering over features extracted from rota-
tion invariant 3D shape descriptors using spherical harmonics
[20]. We annotated 103 vehicle meshes corresponding to the
center of the largest clusters.

Table 1 compares SAVED to other vehicle datasets. Our
dataset contains the most number of images captured from a
diverse set of camera viewpoints. SAVED is the first dataset
with annotations on vehicle parts: we provide the extent to
which each door is rotated in degrees. Next, we describe our
approach for training with simulated data.

4. LEARNING FROM SYNTHETIC VEHICLES

We use extra geometric information about the scene such as
depth maps and surface normals as auxiliary tasks in addition
to the main task for the model to optimize for during pre-
training with synthetic data. We observe in our experiments
that a model initialized using simulation data with this simple



SAVED (Ours) KITTI [9] V-KITTI [10] SYNTHIA [11] Pascal 3D+ [7] EPFL [8]
Real/Simulated Sim Real Sim Sim Real Real
# annotated samples 586,340 80,000 80,000 200,000 6704 2137
Background Random Texture Outdoor Sim. Outdoor Sim. Outdoor Indoor+Outdoor Indoor
Orientation label yes no yes yes yes yes
Azimuth label yes no yes yes yes no
Depth and normal labels D+N D D D no no
Vehicle part Label yes no no no no no

Table 1: Compared to existing datasets with vehicle annotations, SAVED provides vehicle part information and the most
comprehensive set of 3D geometry information.

multi-task training approach leads to much better classifica-
tion performance on real images.

Multi-task approach with geometric signals. We de-
scribe our approach for a general classification scenario
but our method can be generalized trivially to other prob-
lems such as detection and pose estimation. Let X =
{(x1, y1), (x2, y2), . . . , (xN , yN )} be a synthetic training
dataset with pairs of a rendered image of a vehicle xn ∈
RH×W×C and some corresponding ground truth task label
yn ∈ {1, . . . ,M}. The objective is to learn a classifier
ŷ = F (x) such that the following classification loss Lcls is
minimized:

Lcls = −
∑
n

∑
m

ymn log(ŷ
m
n ) (1)

We use a deep neural network for F . This is a standard for-
mulation for optimizing a deep neural network using a cross-
entropy loss.

One of the biggest benefits of synthetic data is that
a simulation engine has a representation for the 3D ge-
ometry of the virtual scene that is readily available. Let
Z = {z1, z2, . . . , zN} be a set of some geometric represen-
tations such as surface normals or depth maps extracted from
the simulator. The intuition behind this approach is that var-
ious tasks regarding a vehicle such as vehicle part detection
and pose estimation are fundamentally related to its geome-
try. We use an encoder-decoder framework to jointly predict
the task label ŷn and the geometry ẑn from xn. We refactor
the classifier F such that:

ŷ = softmax(fcls(f(x))) = F (x) (2)

where f(x) ∈ RD is an output of an encoder that maps an im-
age to a feature representation of some dimension D and fcls
is a linear classification layer that maps feature vectors with
D dimension to the output space with M outputs. The output
of the encoder f(x) then becomes the input the decoder g to
predict the geometric signal ẑ:

ẑ = g(f(x)) (3)

Then, we define the geometric loss Lg over all samples
as:

Lg =
∑
n

d(zn, ẑn) (4)

where d produces a large scalar when differences between zn
and ẑn are large. L1 or L2 norms are suitable functions for d,
we use the L2 norm in our experiments. The final objective
Lfinal to minimize is then:

Lfinal = λclsLcls + λgLg (5)

During pretraining, we optimize the entire encoder-
decoder to minimize Lfinal. During finetuning with real
images, we discard the decoder g and use the encoder f ini-
tialized using synthetic training examples. We set λcls, λg to
0.5 in our experiments.

5. EXPERIMENTS

We compare the effect of pretraining using a popular Ima-
geNet [21] dataset to SAVED for the tasks of vehicle part
recognition and orientation estimation. We show that using
synthetic data with geometric signals during pretraining leads
to much better results for both tasks. Model specifications and
training details are included in the supplementary material.

5.1. Recognizing Vehicle Parts

Using the vehicle part ground truth from SAVED, we train a
model for recognizing opened vehicle doors directly from an
image.
Dataset. There are no datasets with real images that have
ground truth annotations on vehicle door states. To test the
ability to train an ‘opened-door’ detector using simulated im-
ages, we manually annotate a small set of real images from
the DIVA dataset2, visualized in Figure 1. We collected 3950
images for training and 732 for validation. Please see the sup-
plementary material for details on how we collected the train-
ing data and our experimental setup.
Results. Table 2a shows the performance of a ResNet-101
[22] model pretrained on ImageNet finetuned to our task on
DIVA-Doors. A naive approach for training with simulation
data is to simply augment the existing real training set with
additional synthetic data points. This naive joint training
approach only leads to a minor improvements of 0.3 points

2https://actev.nist.gov/



Pretrain Train Val Acc
R101-E ImgNet (R) DIVA-Doors (R) 75.0
R101-E ImgNet (R) Joint (R+S) 75.3
R101-E SAVED (S) - 51.8
R101-E SAVED (S) DIVA-Doors (R) 80.5

(a) Results from an encoder only model (Res101-E) trained with
only classification loss. R: real images. S: simulated images.

Pretrain Train Val Acc
R101-E ImgNet (R) DIVA-Doors (R) 75.0
R101-ED-N SAVED (S) - 52.8
R101-ED-N SAVED (S) DIVA-Doors (R) 85.6
R101-ED-D SAVED (S) - 52.3
R101-ED-D SAVED (S) DIVA-Doors (R) 83.7

(b) Results comparing encoder-decoder models that trained with
auxiliary geometric signals using surface normals (Res101-ED-
N) or depth maps (Res101-ED-D).

Table 2: Results on articulated vehicle recognition. We show
that pretraining with synthetic auxiliary geometric signals
greatly improves model performance on real images.

over the train-on-real-test-on-real baseline. Instead, we ob-
serve a much more substantial performance gain of 5.5 points
when we follow the pretrain-on-sim-then-finetune-on-real
paradigm.

When the model uses geometric signals during pretrain-
ing, we observe significantly improved classification results
in Table 2b. The model, which uses surface normals (R101-
ED-N) to compute the geometric loss during pretraining, has
an accuracy of 85.6%, a significant improvement (+10.6%)
over the model trained without any simulation data. A model
pretrained using surface normals as the multi-task signal out-
performs the model that uses depth maps (R101-ED-D) for
this application.

5.2. Vehicle Orientation Estimation

Dataset. We use the EPFL [8] dataset which is a small dataset
with 20 image sequences of 20 car types at a show. We fol-
low the settings in [24, 25] and report the mean-absolute-error
(MeanAE) for evaluated models. Please refer to supplemen-
tary material for details.
Results. We implement existing state-of-the-art methods re-
ported for this dataset and report our results in Table 3 as
baselines. We choose surface normals as our source for the
geometric signal during pretraining. Compared to the DIVA-
Door experiments, we see a direct simulation-to-real transfer
for this dataset where a model pretrained using only synthetic
images without observing a single real image performs on par
with baseline models. When both models ([23] and [24]) are
pretrained using SAVED and then finetuned using real im-

Pretrain Train MeanAE
[23] ImgNet EPFL 23.8

Our Impl. of [23] ImgNet EPFL 24.4
Our Impl. of [23] + N SAVED - 23.4
Our Impl. of [23] + N SAVED EPFL 11.9

[24] ImgNet EPFL 9.86
Our Impl. of [24] ImgNet EPFL 10.1

Our Impl. of [24] + N SAVED - 12.3
Our Impl. of [24] + N SAVED EPFL 6.46

[25]* ImgNet EPFL 6.04

Table 3: Results on the EPFL dataset. We improve the exist-
ing state-of-the-art models using our approach and pretraining
on SAVED. + N indicates that the model is pretrained with
surface normals as the geometric auxiliary signal. Lower is
better. * We were unable to replicate [25]

ages, we see significant relative improvements of 51.2% and
36.0% respectively.

6. CONCLUSION

The presented SAVED dataset is the first dataset of synthetic
vehicles with articulated vehicles parts with 3D geometry an-
notations. Using SAVED to pretrain deep neural networks,
we showed that we can recognize vehicle parts such as opened
doors directly from real images. Using our multi-task formu-
lation with geometric auxiliary signals, we obtained models
that generalize to real images much more effectively. In the
case of vehicle orientation estimation, a model trained using
only synthetic images transferred directly to real images. We
wish SAVED contributes to development of new methods for
training with synthetic images and approaches for more fine-
graine analysis of vehicles.
Acknowledgements. This work is supported by the Intel-
ligence Advanced Research Projects Activity (IARPA) via
Department of Interior/Interior Business Center (DOI/IBC)
contract number D17PC00345 and by the National Science
Foundation under Grant No. 1763705. Disclaimer: The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing
the official policies or endorsements, expressed or implied,
of IARPA, DOI/IBC, the U.S. Government, or the National
Science Foundation.

7. REFERENCES

[1] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba,
“Virtualhome: Simulating household activities via pro-
grams,” in CVPR, 2018.

[2] Jonathan Tremblay, Aayush Prakash, David Acuna,
Mark Brophy, Varun Jampani, Cem Anil, Thang To,



Eric Cameracci, Shaad Boochoon, and Stan Birchfield,
“Training deep networks with synthetic data: Bridging
the reality gap by domain randomization,” in CVPR
Workshops, 2018, pp. 969–977.

[3] Jiteng Mu, Weichao Qiu, Gregory D. Hager, and Alan L.
Yuille, “Learning from synthetic animals,” in CVPR,
2020.

[4] C. Li, M. Z. Zia, Q. Tran, X. Yu, G. D. Hager, and
M. Chandraker, “Deep supervision with intermediate
concepts,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2019.

[5] Blender Online Community, Blender - a 3D modelling
and rendering package, Blender Foundation, Stichting
Blender Foundation, Amsterdam, 2018.

[6] Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao,
Zihao Xiao, Tae Soo Kim, and Yizhou Wang, “Unre-
alcv: Virtual worlds for computer vision,” in Proceed-
ings of the 25th ACM International Conference on Mul-
timedia, 2017.

[7] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese, “Be-
yond pascal: A benchmark for 3d object detection in the
wild,” in WACV, 2014.

[8] M. Ozuysal, V. Lepetit, and P. Fua, “Pose estimation
for category specific multiview object localization,” in
CVPR, 2009.

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun, “Are
we ready for autonomous driving? the kitti vision
benchmark suite,” in CVPR, 2012.

[10] Adrien Gaidon, Qiao Wang, Yohann Cabon, and
Eleonora Vig, “Virtual worlds as proxy for multi-object
tracking analysis,” in CVPR, 2016.

[11] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio Lopez, “The SYNTHIA Dataset:
A large collection of synthetic images for semantic seg-
mentation of urban scenes,” 2016.

[12] Yi Zhang, Weichao Qiu, Qi Chen, Xiaolin Hu, and
Alan L. Yuille, “Unrealstereo: Controlling hazardous
factors to analyze stereo vision,” in 3DV, 2018.

[13] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and
Vladlen Koltun, “Playing for data: Ground truth from
computer games,” in ECCV, 2016.

[14] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M. Lopez, “The synthia dataset:
A large collection of synthetic images for semantic seg-
mentation of urban scenes,” in CVPR, 2016.

[15] Wenzheng Chen, Huan Wang, Yangyan Li, Hao Su,
Zhenhua Wang, Changhe Tu, Dani Lischinski, Daniel
Cohen-Or, and Baoquan Chen, “Synthesizing training
images for boosting human 3d pose estimation,” in 3DV
2016, pp. 479–488.

[16] Grégory Rogez and Cordelia Schmid, “Mocap-guided
data augmentation for 3d pose estimation in the wild,”
in NIPS, Red Hook, NY, USA, 2016.

[17] David Vazquez, Javier Marin, Antonio Lopez, Daniel
Ponsa, and David Geronimo, “Virtual and real world
adaptation for pedestrian detection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 36,
no. 4, pp. 797–809, 2014.

[18] Gul Varol, Javier Romero, Xavier Martin, Naureen
Mahmood, Michael J. Black, Ivan Laptev, and Cordelia
Schmid, “Learning from synthetic humans,” in CVPR,
July 2017.

[19] Angel X. Chang, Thomas Funkhouser, Leonidas
Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Sil-
vio Savarese, Manolis Savva, Shuran Song, Hao Su,
Jianxiong Xiao, Li Yi, and Fisher Yu, “ShapeNet: An
Information-Rich 3D Model Repository,” Tech. Rep.,
2015.

[20] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Ro-
tation invariant spherical harmonic representation of 3d
shape descriptors,” in Symposium on Geometry Process-
ing, 2003.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “ImageNet: A Large-Scale Hierarchical Image
Database,” in CVPR, 2009.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[23] Kota Hara and Rama Chellappa, “Growing regression
tree forests by classification for continuous object pose
estimation,” Int. J. Comput. Vis., 2017.

[24] Kota Hara, Raviteja Vemulapalli, and Rama Chellappa,
“Designing deep convolutional neural networks for con-
tinuous object orientation estimation,” CoRR, 2017.

[25] Xiaofeng Liu, Yang Zou, Tong Che, Peng Ding, Ping
Jia, Jane You, and B.V.K. Vijaya Kumar, “Conserva-
tive wasserstein training for pose estimation,” in Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.


