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Abstract

We present a dual-pathway approach for recognizing
fine-grained interactions from videos. We build on the suc-
cess of prior dual-stream approaches, but make a distinc-
tion between the static and dynamic representations of ob-
jects and their interactions explicit by introducing separate
motion and object detection pathways. Then, using our
new Motion-Guided Attention Fusion module, we fuse the
bottom-up features in the motion pathway with features cap-
tured from object detections to learn the temporal aspects of
an action. We show that our approach can generalize across
appearance effectively and recognize actions where an ac-
tor interacts with previously unseen objects. We validate
our approach using the compositional action recognition
task from the Something-Something-v2 dataset where we
outperform existing state-of-the-art methods. We also show
that our method can generalize well to real world tasks
by showing state-of-the-art performance on recognizing hu-
mans assembling various IKEA furniture on the IKEA-ASM
dataset.

1. Introduction
In recent years, “two-stream” approaches have emerged

as a dominant paradigm in video-based action recognition
[16, 6, 15]. Such methods process a video stream using
two different neural modules whose scores are fused to pro-
duce a final prediction. Each module has its own purpose:
typically, one module captures temporal information about
motion in the scene, and the other captures spatial informa-
tion about the appearance of relevant objects, actors, and
perhaps background context.

Although it is not always explicit in their formulation,
two-stream models capture the idea that actions fundamen-
tally describe compositional interactions between people
and their environment. These interactions are made up of
atomic actions (verbs) which can take a variety of argu-
ments (in analogy to syntactic analyses, subjects or objects).
For instance, pick up a mug might be represented as

Figure 1: Do current video models have the ability to rec-
ognize an unseen instantiation of an interaction defined us-
ing a combination of seen components? We show that it is
possible by specifying the dynamic structure of an action
using a sequence of object detections in a top-down fash-
ion. When the top-down structure is combined with a dual-
pathway bottom-up approach, we show that the model can
then generalize even to unseen interactions.

the triple (person, pick up, mug). Due to this composi-
tionality, automated recognition of human object interac-
tions in video thus faces the fundamental challenge that the
set of labels is combinatorially large. As a result, enumer-
ating all possible descriptions to train end-to-end methods
[32, 6, 15, 49, 24] is impractical. As illustrated in Figure 1,
the compositional nature of interactions ultimately requires
a vision system that can generalize to actions with previ-
ously seen structure but instantiated with possibly unseen
combinations of components.

In response to this challenge, there have been attempts
to impose an explicit top-down structure to decompose an
action into its actors (objects) and spatial-temporal rela-
tion among them using object detections [48, 36, 25, 26].
However, such methods do not exhibit clear and obvi-
ous improvements unless ensembled with end-to-end RGB



models at test time [36] or ground truth knowledge about
actor-object relations is provided to the model by an ora-
cle [26]. This suggests that enforcing a top-down structure
does not fully capture the range of variations among interac-
tions. Moreover, the fact that an ensemble of independently
trained models consistently outperforms an RGB+object
feature fusion approach [36] for recognizing interactions
suggests that features from the two domains are not effec-
tively fused during training. Nonetheless, the motivation for
using object detections remains strong because objects nat-
urally define a structure of an interaction, and off-the-shelf
object detections [21, 41] have become robust enough to be
consumed as-is to define complex actions [28].

In this paper, we present a hybrid approach for rec-
ognizing fine-grained interactions that borrows ideas from
bottom-up, two-stream action recognition and top-down,
structured human-object interaction detection. The key idea
behind our approach is to make use of a sequence of object
detections to guide the learning of object-centric video fea-
tures that capture both static relations and dynamic move-
ment patterns of objects. The learned object-centric repre-
sentation is then transferred to a motion pathway using an
attention-based Motion-Guided Attention Fusion (MGAF)
mechanism. The MGAF module guides the RGB represen-
tation from the motion pathway to develop representation
of the dynamic aspects of an action.

In the remainder of the paper, we evaluate the model’s
ability to generalize over object appearance when recog-
nizing interactions. We show that our approach leads to a
video model that can recognize unseen interactions (novel
verb-noun compositions) at test time better than existing ap-
proaches. We evaluate our approach using the Something-
Else task [36] from the Something-Something-V2 dataset
[18] where we establish a new state of the art. Moreover, we
show that our framework is a general concept and transfers
readily to a new domain. Using the recently released IKEA-
ASM dataset [3], we show that our model accurately recog-
nizes humans interacting with numerous parts to assemble
various IKEA furniture and also sets the new state-of-the-
art benchmark for the main task of the dataset. Further, we
present the first results on the compositional task using the
IKEA-ASM dataset where a model is tested on novel verb-
noun compositions. In summary, the main contributions of
the paper are:

1. A dual-pathway approach that leverages dynamic rela-
tions of objects.

2. MGAF: A feature fusion strategy to use motion-centric
object features to guide the RGB feature learning pro-
cess.

3. A state of the art recognition performance on multiple
benchmarks including compositional tasks.

2. Related Work
Action Classification in Videos: With the introduction
of large scale video datasets for action classification [13,
19, 27], many deep bottom-up architectures have been
proposed to extract powerful representations from videos
[4, 6, 15, 16, 24, 32, 44, 49]. However, the findings in
[51, 36] suggest that such pretrained models focus more
on appearance rather than the temporal structure of actions.
We actually build upon this appearance bias to learn useful
yet static visual features in the appearance pathway. This
representation regarding the static components of an inter-
action is learned in parallel with the motion pathway which
captures the dynamic aspects of the same interaction. We
make this explicit by leveraging object detections to guide
the motion pathway.
Top-down Structured Models of Videos with Objects: A
growing line of work uses structured information extracted
from videos, such as object detections and scene graphs,
to improve fine-grained analysis of actions [1, 25, 17, 49,
48, 35, 42, 26, 36]. Instead of learning features only from
videos, these approaches often combine features extracted
from regions of interest defined by object detectors such as
[41, 21]. The object centric representations can then be used
to learn pairwise relations between objects [36, 35, 1], be-
tween objects and global context [49, 42, 17, 36] and within
a specified graph structure [48, 26] to improve action classi-
fication. We also use object detections to provide the struc-
ture of interactions. However, we take a more data-driven
approach to learn the structure from a sequence of objects
instead of specifying them in a purely top-down fashion.
Our approach then uses the learned object-centric concepts
to guide the motion pathway to learn more motion-centric
features from videos.
Human Object Interactions: Detecting human-object in-
teraction (HOI) from a still image is an active area of re-
search [8, 7, 20, 43]. Please see the very recent state-of-
the-art HOI paper [43] for more review of the image-based
HOI literature. We fundamentally differ from image-based
method in that we process a sequence of images and focus
on modeling the dynamic aspects of interactions.

In the video domain, authors of [37] define ‘interaction
hotspots’ and learn object affordances from videos. Though
the method was not used to recognize actions in a video, it
provided evidence that the model can correctly compute af-
fordances of objects that did not appear in the training set.
Earlier works for recognizing interactions also exploited the
top-down structure provided by object detections. How-
ever, given the hand-designed nature of the pair-wise ob-
ject attributes, manually specified methods such as [12] do
not scale well. Authors of [52] propose an extension where
the structure is specified implicitly by extracting descriptors
along object tracks. However, we later show in our exper-
iments that combining object level movement information



with static visual information leads to best results. Our con-
tribution includes how we merge the information between
the two modalities using our attention-based MGAF mod-
ule.
Use of Attention: Recent papers have investigated how the
self-attention formulation from the natural language pro-
cessing domain [46, 5, 11, 34, 50] can generalize to the
image domain [2, 40, 10] as well as to video-based appli-
cations [47]. The Non-local Neural Network [47] captures
long-range dependencies within a video by use of a non-
local operator which is a generalization of the self-attention
unit [46]. Our key observation is that the attention oper-
ation leads to a fusion of information whether it is within
the model’s spatial-temporal feature maps [47] or between
long-term and short-term features [49] in a feature-bank
framework. We investigate whether the attention mecha-
nism can be used to guide the RGB representation to focus
more on the dynamic aspects of an action by fusing infor-
mation from the object features.
Architecture: The well known two-stream architecture
[16] has been modified and adopted in state-of-the-art video
recognition models such as [6, 15]. The key idea of the orig-
inal two-stream method is that the stream that takes as input
optical-flow fields learns features regarding motion. Our
approach to guide the Motion-pathway representation with
object features shares the same philosophy. However, we
are imposing a top-down structure that is more relevant to
modeling the relation of objects within an interaction. The
more modern SlowFast [15] architecture also uses two RGB
streams to learn features with different temporal granulari-
ties by processing the video at different temporal sampling
rates for each stream. Instead, we use the same framework
to explicitly dedicate a pathway to learning features related
to dynamic and static aspects of an action. We make this
separation more explicit by leveraging temporal features ex-
tracted from object detections.

3. Method
We describe the components of our dual-pathway for

recognizing interactions from videos. The two pathways,
Appearance (Sec 3.1) and Motion (Sec 3.3), both take as
input a RGB video but only the Motion pathway fuses in-
formation using object detections. We describe how we
learn high-level motion cues using object detections in (Sec
3.2) with a simple temporal model. Finally, we introduce
the Motion-Guided Attention Fusion (MGAF) module (Sec
3.4) that fuses features from the Motion pathway with the
object-centric features using a multi-modal attention opera-
tion.

3.1. Appearance pathway: learning static content

We exploit the appearance bias [36, 51] of modern 3D
convolutional models such as [6] to our advantage and use

them to construct the Appearance pathway.
Let X ∈ RT×H×W×C be a video with C channels with

T frames with spatial dimension H and W . The Appear-
ance pathway can be any feed-forward neural architecture
V that has the following form:

V (X) = vL(vL−1(. . . v2(v1(X)))) (1)

where the l-th intermediate representation is computed
by sub-modules v1:l of the network and V (X) ∈
RTL

V ×HL
V ×WL

V ×CL
V . There are many well-established con-

volutional neural architectures that satisfy the above condi-
tions [6, 32, 15, 16, 45] and our general framework supports
the use of any such models.

Since the goal of the Appearance pathway is to capture
the static components of an action, we use a low sampling
rate to sub-sample the video. Conveniently, most aforemen-
tioned 3D convolution architectures [6, 32, 15, 39, 14, 45]
already follow such a video sampling strategy.

3.2. Learning high-level motion features using ob-
ject detections

The main insight of our approach is that objects over
time encode the characteristic movement patterns of inter-
actions. Suppose we can detect at mostD objects in a given
video with T frames. Let Z(X) ∈ RT×4D be a represen-
tation of the video X defined using object detections. We
define a frame Z(X, t) ∈ R4D as a concatenation of D
bounding box coordinates of detected objects such that:

Z(X, t) = [o1x1, o
1
y1, o

1
x2, o

1
y2, . . . , o

D
x1, o

D
y1, o

D
x2, o

D
y2] (2)

where odx1, o
d
y1, o

d
x2, o

d
y2 corresponds to the bounding box

coordinates of the d-th object category. In practice, we set
D as a constant and zero-pad the appropriate dimensions
when there are few than D objects in the scene. When there
are more than D objects, we select D objects based on their
prediction confidence scores.

Given a time-series of frame-level object detections, let
U be a feed-forward architecture such that:

U(X) = uL(uL−1(. . . u2(u1(Z(X))))) (3)

where ul is a submodule of U , 1 ≤ l ≤ L and U(X) ∈
RTL

U ×CL
U . Our framework does not require the depth of the

V and U to be the same; it only requires that U contains a
sequence of trainable layers that performs temporal feature
extraction. For example, each ul can be implemented as a
temporal convolution layer with 1D convolutions followed
by a non-linear operation [30], a recurrent layer such as [23,
9], a self-attention based transformer encoder [46] or any
mixture of such components.

When we optimize U to predict interaction labels from
time-series of object detections, ul by design contains in-
formation regarding relations between objects and their dy-
namics over time. The key aspect of our approach is to



Figure 2: Our approach processes a video using two pathways that capture different aspects of an interaction. The appearance
pathway learns static visual cues from a video using using only a few frames sampled from a video. The motion pathway
explicitly captures dynamic information of the action from a video by leveraging the temporal features extracted from object
detections. The Motion Guided Attention Fusion (MGAF) module effectively fuses the top-down structural inforamtion
provided by the object detections to guide the representation learning process of the motion pathway.

transfer the object-centric features learned from u1:L to the
RGB-based Motion pathway which we describe next.

3.3. Motion pathway: learning dynamic structure
from objects and video

The Motion pathway assumes the same input video X ∈
RT×H×W×C as the Appearance pathway. The goal of the
Motion pathway is to extract motion-biased features from
X by learning to fuse the object-motion features provided
by U . Suppose the Motion pathway M is a feed-forward
architecture with L modules m1:L. Given the output of
the previous layer Ml−1 ∈ RT l−1

M ×Hl−1
M ×W l−1

M ×Cl−1
M , each

module ml is defined as a residual block [45] with a tempo-
ral convolution operation followed by a spatial convolution:

fl = σ(F (Ml−1; θ
f
l ))

gl = σ(G(fl; θ
g
l ))

ml(Ml−1) =Ml−1 + gl

(4)

where F is a temporal 3D convolution operation where each
filter in θfl has a size t × 1 × 1 × Cl−1

M , G is a spatial 3D
convolution operation where each filter in θgl has a size 1×
k× k×Cl−1

M , σ is a normalization operation followed by a
non-linearity, and t, k are temporal/spatial filter dimensions.

Suppose the module has access to motion features
Ul−1 ∈ RT l−1

M ×Cl−1
U as an additional input that has the

same temporal length and some per-frame feature dimen-
sion Cl−1

U . We later show in our experiments that where
and how Ul−1 gets fused with the Motion pathway mod-
ule is critical. To best preserve temporal information when
fusing, we choose the representation fl resulting from a set

of temporal convolutions to fuse with Ul−1. To learn to
merge only the relevant motion information, we introduce
the Motion-Guided Attention Fusion (MGAF) to fuse the
visual representation fl with the object feature Ul−1. We
modify the module ml accordingly as:

fl = σ(F (Ml−1; θ
f
l ))

fusedl = MGAF(fl, Ul−1)

gl = σ(G(fusedl; θ
g
l ))

ml(Ml−1, ul−1) =Ml−1 + gl

(5)

Figure 3 visualizes the operation within a block in the mo-
tion pathway. We describe how we perform multi-modal
feature fusion using the MGAF module.

3.4. MGAF: Motion Guided Attention Fusion

A common feature fusion strategy is to concatenate the
two representations along the channel dimension. Concate-
nation assumes that all channels of the two features con-
tribute equally. Instead, we would like to enhance only
the channels that capture relevant motion patterns. For
this purpose, we allow the the RGB features fl to attend
to the object-centric representation Ul−1 and effectively re-
calibrate the channels of the fl via a cross-modal attention
operation.

Given fl ∈ RT l
M×Hl

M×W l
M×Cl

M , we first perform spa-
tial pooling with a window of size H l

M × W l
M such that

pool(fl) = z(fl) ∈ RT l
M×Cl

M . For notational brevity, we
drop subscripts and represent z(fl) as z and Ul−1 as U .
Then, we allow the spatially collapsed visual representation



(a) RGB-only (b) RGB+objects with MGAF

Figure 3: (a): An illustration of the l-th module in the mo-
tion pathway that learns features over a visual feature Ml−1

to produce Ml. (b) The same module augmented with a
Motion Guided Attention Fusion (MGAF) which fuses the
RGB feature Ml−1 with the object feature Ul−1 to yield a
more motion-centric representation.

z to attend to the object feature U by:

Az�U = softmax(
(zWz)(W

T
U U

T )√
C

)UWU (6)

where Wz ∈ RCl
M×C and WU ∈ RCl−1

U ×C are learnable
parameters of the MGAF module and C is a hyperparam-
eter. Then the attention Az�U feature is used to re-weight
channels of z by:

MGAF(fl, Ul−1) = σ(α(Az�U )Wuz)⊗ fl (7)

where α is a normalization (layer-norm) operation followed
by an activation operation, Wuz ∈ RC×Cl

M is a learnable
transformation, σ is a sigmoid function and⊗ is an element-
wise multiplication. The term σ(α(AS�V )Wuz) acts as a
gating mechanism to re-calibrate both the channel and time
dimensions of fl based on the attention operation between
the RGB and object features.

3.5. Instantiation

Figure 2 shows the overall architecture of our approach.
We use the two stream architecture inspired by [15]. Like-
wise, we use separate frame rates for each pathway: the
Appearance pathway processes a video with a very low
frame rate and the Motion pathway extracts visual features
from a video with a higher frame rate (higher by a factor of
α = 8). We later show in our experiments that the differ-
ence in frame rate alone does not necessarily lead to decou-
pled representation of motion and appearance which limits
the model’s generalization performance. We show that the

Figure 4: The Motion Guided Attention Fusion module. We
fuse the information between the spatially collapsed RGB
feature z(fl) from the motion pathway and the object fea-
ture Ul−1. We use a self-attention mechanism to achieve
this multi-modal feature fusion.

fusion of features derived from time-series of object detec-
tions is necessary for the model to explicitly learn represen-
tation regarding the motion patterns of interactions.

As illustrated in Figure 2, we keep the relative feature
dimensions consistent with the original formulation in [15]
where the Motion pathway has fewer convolutional kernels
by a factor of β = 1/8. We also do not change the fu-
sion strategy (conv-fusion) of information between the two
RGB pathways as in [15] to keep comparisons simple and
fair. Finally, we learn to classify interactions by finding the
optimal set of trainable parameters for all modules jointly
by minimizing the following loss:

L = −
∑
N

(λry
nlog(ŷnr ) + λoy

nlog(ŷno )) (8)

where yn is the ground truth interaction label of the n-th
training sample, ŷnr is the prediction using the RGB feature,
ŷno is the prediction with the object features, and λr, λo are
parameters to control to contribution of each cross-entropy
terms.

4. Experiments on Something Else
Labels found in the Something-Something-V2 [18]

dataset have a compositional structure where a combina-
tion of a verb and a noun (object) defines an action. The
dataset contains a total of 174 action categories where a
crowd-sourced worker uploads a video capturing an arbi-
trary composition of an action category (verb) with an ob-
ject (noun). As a result, the data set contains a very diverse
set of verb-noun compositions involving 12,554 different
object descriptions. The recently released Something-Else
task [36] is an extension to the original task with new object
annotations and a compositional action recognition task.

4.1. The compositional action classification task

The new compositional split assumes that the set of verb-
noun pairs available for training is disjoint from the set



given at inference time.
Let there be two disjoint sets of nouns (objects), {A,B},

and two disjoint sets of verbs (actions) {1, 2}. The goal
of the compositional action recognition task is to recognize
novel verb-noun compositions at test time. The model can
observe instances from the set {1A + 2B} during training
but will be tested using instances from {1B + 2A}. In this
setting, there are 174 action categories with 54,919 train-
ing and 57,876 validation instances. The model is evaluated
using a standard classification set up and we measure per-
formance with top-1 and top-5 accuracies.

4.2. Implementation detail

The presented framework is general and can use most re-
cent state of the art models to instantiate each components.
We extend the SlowFast [15] architecture given its dual-
pathway implementation and state of the art results on large-
scale action classification benchmarks. We adopt the Slow
pathway from [15] as our appearance and the Fast pathway
as the motion pathway. The appearance and motion path-
ways subsample 8 and 32 frames respectively given a video
sample.

We use the ground truth object detections and tracks pro-
vided by the dataset release. For results using predicted ob-
ject detections, we use the same detection boxes as the au-
thors of [36] which come from a trained Faster-RCNN [41]
with the Feature Pyramid Network (FPN) [33] and ResNet-
101 [22] backbone. The object detector outputs a set of
a person (hand) and generic-object localizations as well as
confidence scores.

In terms of the object-based temporal model, we use a
very light-weight 5-layer temporal convolutional neural net-
work [31, 29]. We do not perform any pooling operation in
the temporal dimension until the final global-average pool-
ing layer. All temporal convolution filters are of length 9
with stride 1. All experiments are performed using the Py-
torch [38] framework. Additional details necessary to re-
produce our results including optimization settings, hard-
ware specs and training parameters are reported in the sup-
plementary material.

4.3. Comparison to the state of the art

For RGB-only baselines, we use the popular I3D [6]
model as our single-pathway (SP) architecture and the
SlowFast [15] model as the dual-pathway (DP) baseline.
In table 1, we first evaluate the performance of the mod-
els when the set of verb-noun compositions available dur-
ing training is not disjoint (*–mixed) from the set found
during testing. We observe a large drop in performance of
about 25% for both SP and DP models. This is a strong
evidence that current methods for bottom-up video classi-
fication do not generalize well across different verb-noun
compositions. The purely bottom-up models are possibly

Model Input Evaluation
RGB Objects top-1 top-5

SP* – mixed [6] o 61.7 83.5
DP* – mixed [15] o 64.9 90.1
STIN* – mixed [36] o 54.0 79.6
Ours* – mixed o 55.1 79.9
SP [6] o 46.8 72.2
DP [15] o 49.6 77.9
STIN [36] o 51.4 79.3
STIN – concat o o 54.6 79.4
STIN – ensemble o o 58.1 83.2
Ours (Obj only) o 52.3 77.5
MGAF(SP, Obj) o o 60.5 84.3
MGAF(DP, Obj) o o 68.0 88.7

Table 1: Comparison to other methods on the composi-
tional action classification task using ground-truth objects.
SP: Single-pathway. DP: Dual-pathway. MGAF: Motion-
guided attention fusion. *–mixed : Indicates that the verb-
noun compositions found during training also exist in the
test set.

too biased towards appearance of actions and fail to gener-
alize across object appearance involved in the interactions.

Using the top-down structure provided by object detec-
tions, we show in Table 1 that models that only use ob-
ject detections (such STIN [36] and our object-only tempo-
ral model) already outperform purely bottom-up RGB-only
models. This shows that object detections provide strong
structural cues necessary for recognizing interactions.

The key differentiating aspect of our approach compared
to other state of the art models such as the STIN [36] is
how we leverage the top-down structure extracted from ob-
ject detections to guide the bottom-up feature learning pro-
cess from videos. Table 1 provides a head to head compar-
ison of the state-of-the-art model (STIN) to our approach.
To learn a joint model of video and objects, STIN concate-
nates object-based features to visual features extracted from
an I3D model. The resulting STIN–concat model improves
over the object-only STIN baseline by 2.8 points. In com-
parison, the MGAF(SP,Obj) model uses the MGAF module
instead to fuse features from object detections and the same
I3D model. We observe a significantly larger gain of 8.2
points over our object-only baseline model. This actually
outperforms even the ensemble of multi-modal approaches
(STIN–ensemble).

The MGAF(SP,Obj) instantiation still learns visual rep-
resentation from video using only a single pathway. We can
make the decoupling of the motion and appearance repre-
sentations more explicit by using the dual-pathway formu-
lation. As described in the Methods section, we fuse only
the motion pathway with the object based features. The re-



Obj-only Model Comp. # Params
STIN [36] 51.4 4.288M

v1 52.3 0.838M
v2 53.6 4.150M

(a) Variantions of our object-only model compared to STIN.

Top-1 Acc.
A only 46.8
M only 39.4

A + M (Dual-pathway) 49.6
O only 52.3

Concat(A, O) 54.7
Concat(A + M , O) 58.8

MGAF(A, O) 60.5
MGAF(M, O) 55.8

M + MGAF(A, O) 63.8
A + MGAF(M, O) 68.0

(b) Ablations on model components using the Something-Else
compositional task. First block: comparison of RGB-only
components. Second block: naive concatenation approach
to fuse object features (O) with RGB features (A and M).
Third-block: Comparisons of different input combinations
to the MGAF module. A: Appearance-pathway. M: Motion-
pathway. O:Object-pathway

Table 2: Various ablations of model components using the
compositional split of the Something-Else dataset.

sulting MGAF(DP,Obj) model leads to significant improve-
ments in performance, leading to a state-of-the-art perfor-
mance of 68.0 top-1 accuracy.

When using predicted object detections instead of
ground truth localizations, we observe that the noise in ob-
ject locations causes the performance of MGAF(DP,Obj) to
drop to top-1 and top-5 accuracies of 61.2 and 83.3. This is
still an improvement of 9.3 and 6.2 points over the current
state of the art [36] which performs at 51.5 top-1 and 77.1
top-5 accuracies.

4.4. Ablations

In Table 2a, we compare variations of our simple tem-
poral model that learns from a sequence of object detec-
tions. We wanted it to be as fast and as light-weight as pos-
sible such that it adds minimal overhead to the video model.
The v1 and v2 object models both have the same depth (5
temporal convolution layers) but with different number of
filters per layer. We use the v1 model throughout all our
Something-Else experiments because it still outperforms
the state of the art STIN with less than 20% of learnable
parameters than either STIN or our v2 variant.

In Table 2b, the first block of rows compares the contri-

bution of each pathway of the DP given only RGB videos.
We show that the combination of both the appearance (A)
and motion (M) pathways is necessary to improve recog-
nition performance of interactions found in the Something-
Else dataset. The second block of Table 2b shows the per-
formance of a model that combines RGB and object detec-
tions via a concatenation of features from the two domains.
The Concat(A,O) is essentially a late-fusion of multi-modal
features from the SP and object (O) models. We observe
that the top-down structure provided by O helps improve
the model over the object-only baseline by 2.4 points and
over the RGB-only baseline by 7.9 points. We find consis-
tent behavior when the object feature O is concatenated with
the output of the RGB only dual-pathway (A+M) model.

Compared to the Concat(A,O) model, the comparable
model using the MGAF module, MGAF(A,O), achieves a
considerably higher accuracy (54.7 vs. 60.5). This fuses
the appearance feature directly with the object features but
without the use of a separate motion pathway. Given that
there are two RGB pathways (A and M), the MGAF mod-
ule can be used to fuse the object-centric representation O
with either pathway. We find that fusing O with the motion
pathway M and then later merging with A leads to best re-
sults (68.0). We believe the finer temporal granularity of the
motion pathway input preserves more dynamic information
of the video and thus fuses more effectively with O.

5. Experiments on the IKEA Assembly dataset
In this section, we test the ability of our model to recog-

nize realistic human object interactions using the IKEA As-
sembly dataset. Compared to the Something-Else dataset,
the IKEA dataset contains realistic interactions that occur at
a much more granular scale. Figure 5 clearly illustrates the
differences in viewpoint, object scale and levels of occlu-
sion between the two datasets. We show that our approach
transfers well to this realistic domain.

A label in the IKEA-Assembly dataset is defined by a
composition of a verb (ie. spin) and an object (ie. a leg).
There are 12 verbs and 7 objects present in the dataset.
This leads to a total of 33 defined interactions. The com-
positional structure of interactions gives rise to a severely
unbalanced label set. For example, there are 754 training
examples of spin leg as opposed to only 20 samples of
lay-down leg. Hence, we report both the micro aver-
aged accuracy and mean of per class recall (macro-recall)
to assess the models. The implementation detail necessary
for reproducing our results will be detailed in the supple-
mentary material.

5.1. Results on the original task

We evaluate our approach on the original task of the
dataset. The verb-noun compositions available during train-
ing also appears at test time in this setup. This is equiv-



Figure 5: The difference between the IKEA-Assembly and
the Something-Else datasets include scale, granularity of
motion, viewpoint and levels of occlusion.

Model Modality Evaluation
RGB Objects Macro Micro

SP (I3D [6]) o 41.8 74.6
DP (SlowFast [15]) o 43.9 73.5
Obj-only o 18.9 57.8
Concat(SP, Obj) o o 44.2 76.2
Concat(DP, Obj) o o 46.0 76.5
MGAF(DP, Obj) o o 47.7 78.8

Table 3: Results on the original task of the IKEA-Assembly
dataset. SP:Single-pathway DP: Dual-pathway. Concat:
conatenation of features. MGAF: Motion Guided Attention
Fusion

Model Mixed Compositional
Macro Micro Macro Micro

SP (I3D [6]) 44.8 66.4 27.0 45.1
Obj-only 24.7 37.4 22.4 42.1
Concat(SP, Obj) 45.6 68.7 28.3 43.1
DP (SlowFast [15]) 48.8 72.9 29.4 54.7
Concat(DP, Obj) 49.0 73.2 32.0 53.7
MGAF(DP, Obj) 49.1 72.4 37.6 55.6

Table 4: Results on the compositional task of the IKEA-
Assembly dataset. SP:Single-pathway DP: Dual-pathway.
Concat: concatenation of features. MGAF: Motion Guided
Attention Fusion

alent to the ‘mixed’ compositional setup shown in Section
4. In Table 3, we first report the performances of RGB-
only baselines, the single-pathway I3D [6]) and the dual-
pathway SlowFast [15]. In this dataset, we find that the
there is no significant performance gap between the SP and
DP models. This suggests that the extra motion pathway in
DP is not contributing much. We believe this is caused by a
combination of two factors. First, IKEA-Assembly dataset
is much smaller than the Something-Else dataset (around 5k
training instances vs. 50k) hence the purely bottom-up DP

model might not have fully learned to decouple motion and
appearance. Second, given the experimental setup, many
interactions can be correctly classified using just the static
cues (ie. lay-down leg vs. pick-up shelf).

We find that the top-down structure given by the object
detections helps mitigate the first issue. For instance, Con-
cat(DP, Obj) instantiation improves the RGB-only DP base-
line by 2.1. We gain an additional 1.7 points when using the
MGAF module to target the fusion to the motion pathway.
However, as mentioned above, the model can get away with
not having to model motion explicitly in this setup. Next,
we describe the compositional task where a model must be
able to explicitly reason about the dynamic as well as the
static components of an interaction.

5.2. Results on the compositional task

We introduce the compositional task for the IKEA-
Assembly dataset. The setup here is the same as the compo-
sitional task from the Something-Else dataset. In essence,
we are testing the model’s ability to recognize a ‘push table
top’ instance that it has not seen during training by observ-
ing ‘push leg’ and ‘flip table top’ samples during training.
This leads to a 6-way classification of verbs. We provide the
details of how we split the action labels to form our compo-
sitional split in the supplementary material.

In Table 4, we observe that RGB-only models (SP and
DP) show large discrepancies in performance between the
mixed and compositional tasks. The big performance degra-
dation (17.5 for SP and 19.4 or DP on macro-recall) shows
that current models in their original form do not general-
ize well to unseen interactions. In contrast, we see that the
performance gaps are smaller between the two splits for the
hybrid models. And finally, we see clear empirical evidence
that the MGAF module helps the model learn stronger rep-
resentations for recognizing interactions from videos, out-
performing all other models for both tasks.

6. Conclusion

We presented an approach that utilizes the top-down
structure implicit in a sequence of object detections to
guide the video model to learn representation that cap-
tures dynamic aspects of complex human object interac-
tions. We have shown that a bottom-up dual-pathway ap-
proach combined with the Motion Guided Attention Fusion
module achieves this goal and leads to a video model that
can even recognize humans interacting with previously un-
seen objects. We validate our approach on the Something-
Else and IKEA-Assembly datasets where we achieve state
of the art performance on recognizing compositional ac-
tions.
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